skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Elastic pulsed wave propagation in media with second- or higher-order nonlinearity. Part I. Theoretical framework

Journal Article · · Journal of the Acoustical Society of America
DOI:https://doi.org/10.1121/1.414890· OSTI ID:263133
 [1]
  1. Los Alamos National Lab., NM (United States)

A theoretical model is presented that describes the interaction of frequency components in arbitrary pulsed elastic waves during one-dimensional propagation in an infinite medium with extreme nonlinear response. The model is based on one-dimensional Green`s function theory in combination with a perturbation method, as has been developed for a general source function by McCall. A polynomial expansion of the equation of state is used in which four orders of nonlinearity in the moduli are accounted for. The nonlinear wave equation is solved for the displacement field at distance x from a symmetric `breathing` source with arbitrary Fourier spectrum imbedded in an infinite medium. The perturbation expression corresponds to a higher-order equivalent of the Burger`s equation solution for velocity fields in solids. The solution is implemented numerically in an iterative procedure which allows one to include an arbitrary attenuation function. Energy conservation is investigated in the absence of (linear) attenuation, and the notion of a hybrid (linear and nonlinear) dissipation is illustrated. Examples are provided showing the effect of each term in the perturbation solution on the spectral content of the waveform. Finally, the possibility of creating a parametric array for seismic exploration is briefly considered from a theoretical point of view. 28 refs., 9 figs.

Sponsoring Organization:
USDOE
DOE Contract Number:
W-7405-ENG-36
OSTI ID:
263133
Journal Information:
Journal of the Acoustical Society of America, Vol. 99, Issue 6; Other Information: PBD: Jun 1996
Country of Publication:
United States
Language:
English