Skip to main content
U.S. Department of Energy
Office of Scientific and Technical Information

Machine learning models for PDE constrained optimization

Technical Report ·
DOI:https://doi.org/10.2172/2589582· OSTI ID:2589582
 [1]
  1. Sandia National Laboratories (SNL-NM), Albuquerque, NM (United States)

Partial differential equation (PDE)-constrained optimization problems arise in a variety of scientific and engineering applications, such as topology optimization, electrodynamics, fluid dynamics, and structural dynamics. However, these problems are often challenging and computationally expensive to solve, due to the need to solve the PDEs within the optimization loop. One approach to reducing the computational cost of these methods while providing convergence guarantees is through inexact trust region methods; this method uses lower fidelity solutions of the PDE at early stages of the optimization and adjusts the required accuracy of inexact PDE solvers as the optimization progresses. In this work, we explore the use of machine learning based surrogate models with these inexact trust region methods. We first demonstrate the potential of this approach by using Gaussian processes as the surrogate model and test this on a simple PDE-constrained optimization problem. We then document explorations into improving the computational costs of evolutional deep neural network / neural Galerkin methods, with the eventual goal of using these methods with the inexact trust region algorithms. We are able to speed up these approaches, albeit at the cost of lower accuracy.

Research Organization:
Sandia National Laboratories (SNL-NM), Albuquerque, NM (United States)
Sponsoring Organization:
USDOE National Nuclear Security Administration (NNSA)
DOE Contract Number:
NA0003525
OSTI ID:
2589582
Report Number(s):
SAND--2025-11868R; 1789929
Country of Publication:
United States
Language:
English

Similar Records

Progressive construction of a parametric reduced‐order model for PDE‐constrained optimization
Journal Article · Mon Dec 22 23:00:00 EST 2014 · International Journal for Numerical Methods in Engineering · OSTI ID:1400895

An Efficient, Globally Convergent Method for Optimization Under Uncertainty Using Adaptive Model Reduction and Sparse Grids
Journal Article · Tue Jul 16 00:00:00 EDT 2019 · SIAM/ASA Journal on Uncertainty Quantification · OSTI ID:1559547

Constrained or unconstrained? Neural-network-based equation discovery from data
Journal Article · Tue Dec 31 23:00:00 EST 2024 · Computer Methods in Applied Mechanics and Engineering · OSTI ID:2589832

Related Subjects