Structure and properties of bottlebrush polyelectrolyte complexes (in EN)
Structural variation of polyelectrolytes has been shown to play an important role in altering polyelectrolyte complex (PEC) properties in recent years. However, molecular‐level details such as polyelectrolyte architecture remain underdeveloped. Here, we use a combination of ring‐opening metathesis polymerization (ROMP), atom‐transfer radical polymerization (ATRP), and postpolymerization reactions to create densely branched bottlebrushes of poly(dimethylamino ethyl methcacrylate) and poly(tert‐butyl methacrylate) with high molecular weights (MDa), which we then convert into fully charged and densely branched bottlebrushes of poly(trimethylaminoethyl methacrylate) (PTMAEMA) and poly(methacrylic acid) (PAA). We investigate the structure and properties of bottlebrush polyelectrolyte complexes (BPECs) using optical microscopy, rheology, cryogenic transmission electron microscopy (Cryo‐TEM), and small‐angle X‐ray scattering (SAXS). Bottlebrush polyelectrolyte complexes are white solids, which exhibit gel‐like mechanical properties, which we attribute to sidechain interpenetration. Using a combination of Cryo‐TEM and SAXS, we are able to outline the structural development of BPECs, detailing how the network topology, sidechain conformation, and interdigitation spacing changes as a function of salt. Our results provide a foundation for further exploration of branched architectures within polyelectrolyte complexation.
- Research Organization:
- Argonne National Laboratory (ANL), Argonne, IL (United States). Advanced Photon Source (APS)
- Sponsoring Organization:
- USDOE
- Grant/Contract Number:
- AC02-06CH11357
- OSTI ID:
- 2580640
- Journal Information:
- Journal of Polymer Science, Journal Name: Journal of Polymer Science Journal Issue: 16 Vol. 62; ISSN 2642-4150
- Publisher:
- WileyCopyright Statement
- Country of Publication:
- United States
- Language:
- EN
Similar Records
Poly(3-hexylthiophene) Molecular Bottlebrushes via Ring-Opening Metathesis Polymerization: Macromolecular Architecture Enhanced Aggregation
Synthesis of Polystyrene-Polylactide Bottlebrush Block Copolymers and Their Melt Self-Assembly into Large Domain Nanostructures