Amino mapping: possibility to visualize amino-N compounds in the rhizosphere of Zea Mays L. (in EN)
Abstract
Understanding N uptake by plants, the N cycle, and their relationship to soil heterogeneity has generated a great deal of interest in the distribution of amino-N compounds in soil. Visualization of the spatial distribution of amino-N in soil can provide insights into the role of labile N in plant-microbial mechanisms of N acquisition and plant N uptake, but until now, it has remained technically challenging. Here, we describe a novel technique to visualize the amino-N distribution at the root-soil interface. The technique is based on time-lapse amino mapping (TLAM) using membranes saturated with the fluorogenic OPAME reagent (O-phthalaldehyde and β-mercaptoethanol). OPAME in the membrane reacts with organic compounds containing a NH2functional group at the membrane-soil interface, generating a fluorescent product visible under UV light and detectable by a digital camera. The TLAM amino-mapping technique was applied to visualize and quantify the concentration of amino-N compounds in the rhizosphere of maize (Zea MaysL.). A ten times greater amino-N concentration was detected in the rhizosphere compared to non-rhizosphere soil. The high content of amino-N was mainly associated with the root tips and was 3 times larger than the average amino-N content at seminal roots. The amino-N rhizosphere was 2 times broader around the root tips than around other parts of the roots. We concluded that TLAM is a promising approach for monitoring the fate of labile N in soils. However, the technique needs to be standardized for different soil types, plant species, and climate conditions to allow wider application.
- Research Organization:
- Univ. of Wisconsin, Madison, WI (United States)
- Sponsoring Organization:
- USDOE Office of Science (SC)
- Grant/Contract Number:
- SC0018409
- OSTI ID:
- 2576205
- Journal Information:
- Biology and Fertility of Soils, Journal Name: Biology and Fertility of Soils Journal Issue: 8 Vol. 59; ISSN 0178-2762
- Publisher:
- SpringerCopyright Statement
- Country of Publication:
- United States
- Language:
- EN
Similar Records
Non-destructive spatial analysis of phosphatase activity and total protein distribution in the rhizosphere using a root blotting method