Skip to main content
U.S. Department of Energy
Office of Scientific and Technical Information

Calibration and characterization of the line-VISAR diagnostic at the HED-HIBEF instrument at the European XFEL

Journal Article · · Review of Scientific Instruments
DOI:https://doi.org/10.1063/5.0271027· OSTI ID:2575177
 [1];  [2];  [3];  [4];  [3];  [5];  [3];  [6];  [7];  [3];  [8];  [9];  [3];  [10];  [6];  [11];  [5];  [5];  [12];  [13] more »;  [14];  [3];  [12];  [15];  [16];  [3];  [8];  [17];  [18];  [3];  [8];  [19];  [9];  [5];  [20];  [21];  [14];  [18];  [21];  [5];  [22];  [23];  [24];  [21];  [17];  [12];  [25];  [8];  [26];  [26];  [27];  [18];  [5];  [28];  [3];  [18];  [8];  [2];  [29];  [12];  [8];  [9];  [16];  [3];  [9];  [9];  [14];  [30];  [21];  [5];  [22];  [25];  [22];  [31];  [32];  [33];  [17];  [8];  [34];  [12];  [31];  [5];  [5];  [8];  [6];  [35];  [35];  [20];  [11];  [36];  [8];  [2];  [12];  [2];  [37];  [12];  [12];  [35];  [26];  [15];  [26];  [5];  [8];  [8];  [38];  [12];  [3];  [6];  [3];  [8];  [34];  [17];  [22];  [5];  [5];  [5];  [5];  [9] « less
  1. Queen’s University Belfast (United Kingdom); et al.
  2. Lawrence Livermore National Laboratory 2 , Livermore, California 94550,
  3. Lawrence Livermore National Laboratory (LLNL), Livermore, CA (United States)
  4. School of Mathematics and Physics, Queen’s University Belfast, University Road 1 , Belfast BT7 1NN,
  5. European XFEL 4 , Holzkoppel 4, 22869 Schenefeld,
  6. Ecole Polytechnique, Palaiseau, Laboratoire pour l’utilisation des Lasers Intenses (LULI), CNRS UMR 7605 Route de Saclay 5 , 91128 PALAISEAU Cedex,
  7. University of York, School of Physics, Engineering and Technology 6 , Heslington York YO10 5DD,; First Light Fusion Ltd 23 , Oxfordshire,
  8. Helmholtz-Zentrum Dresden-Rossendorf (HZDR) 7 , Bautzner Landstraße 400, 01328 Dresden,
  9. SUPA, School of Physics and Astronomy, and Centre for Science at Extreme Conditions, The University of Edinburgh 8 , Edinburgh EH9 3FD,
  10. Frontiers Science Center for Critical Earth Material Cycling, School of Earth Sciences and Engineering, Nanjing University 10 , Nanjing 210023,; Condensed Matter Theory, Department of Physics, AlbaNova University Center, Royal Institute of Technology (KTH) 11 , 10691 Stockholm,
  11. Los Alamos National Laboratory 12 , Los Alamos, New Mexico 87545,
  12. Central Laser Facility (CLF), STFC Rutherford Appleton Laboratory, Harwell Campus 9 , Didcot OX11 0QX,
  13. Università degli Studi di Milano Bicocca, Dipartimento di Scienze dell’Ambiente e della Terra 13 , Piazza della Scienza, 1e4 I-20126 Milano,
  14. Univ. Lille, CNRS, INRAE, Centrale Lille, UMR 8207–UMET–Unité Matériaux et Transformations 14 , F-59000 Lille,
  15. University of Rochester, Laboratory for Laser Energetics (LLE) 15 , 250 East River Road, Rochester, New York 14623-1299,
  16. AWE, Aldermaston 16 , Reading RG7 4PR,
  17. Department of Physics, Clarendon Laboratory, University of Oxford 17 , Parks Road, Oxford OX1 3PU,
  18. CNR–Consiglio Nazionale delle Ricerche, Istituto Nazionale di Ottica, (CNR–INO) 18 , Via G. Moruzzi 1, 56124 Pisa,
  19. Université de Bordeaux, CNRS, CEA, CELIA 19 , UMR 5107, F-33400 Talence,
  20. Universidad de Valencia–UV, Departamento de Fisica Aplicada–ICMUV 20 , C/Dr. Moliner 50 Burjassot, E-46100 Valencia,
  21. SLAC National Accelerator Laboratory 21 , 2575 Sand Hill Road, Menlo Park, California 94025,
  22. Department of Physics, University of South Florida 22 , Tampa, Florida 33620,
  23. Lawrence Livermore National Laboratory 2 , Livermore, California 94550,; First Light Fusion Ltd 23 , Oxfordshire,
  24. PIMM, Arts et Metiers Institute of Technology, CNRS, Cnam, HESAM University 24 , 151 Boulevard de l’Hopital, 75013 Paris,
  25. University of York, School of Physics, Engineering and Technology 6 , Heslington York YO10 5DD,
  26. Deutsches Elektronen-Synchrotron DESY 25 , Notkestr. 85, 22607 Hamburg,
  27. Hanyang University, Department of Physics 26 , 17 Haengdang dong, Seongdong gu, Seoul 133-791,
  28. Helmholtz-Zentrum Dresden-Rossendorf (HZDR) 7 , Bautzner Landstraße 400, 01328 Dresden,; Universität Rostock, Institut für Physik 27 , D-18051 Rostock,
  29. Yonsei University, Department of Earth System Sciences 28 , 50 Yonsei-ro Seodaemun-gu, Seoul 03722,
  30. Univ. Grenoble Alpes, Univ. Savoie Mont Blanc, CNRS, IRD, Univ. Gustave Eiffel 29 , ISTerre, 38000 Grenoble,
  31. Institut für Geo- und Umweltnaturwissenschaften, Albert-Ludwigs-Universität Freiburg 30 , Hermann-Herder-Straße 5, 79104 Freiburg,
  32. Osaka University, Graduate School of Engineering Science 31 , 2-1 Yamada-oka, Suita, Osaka 565-871,
  33. Sorbonne Université, Muséum National d’Histoire Naturelle, UMR CNRS 7590, Insitut de Minéralogie, de Physique, des Matériaux, et de Cosmochinie, IMPMC 32 , Paris 75005,
  34. University of Massachusetts Amherst, Department of Chemistry 33 , 690 N Pleasant St. Physical Sciences Building, Amherst, Massachusetts 01003-9303,
  35. Universität Rostock, Institut für Physik 27 , D-18051 Rostock,
  36. Paul Scherrer Institut 34 , Forschungsstrasse 111, 5232 Villigen,
  37. CEA, DAM, DIF 35 , 91297 Arpajon,; Université Paris-Saclay, CEA, Laboratoire Matière en Conditions Extrêmes 36 , 91680 Bruyères-le-Châtel,
  38. Carnegie Science, Earth and Planets Laboratory 37 , 5241 Broad Branch Road NW, Washington, District of Columbia 20015,

In dynamic-compression experiments, the line-imaging Velocity Interferometer System for Any Reflector (VISAR) is a well-established diagnostic used to probe the velocity history, including wave profiles derived from dynamically compressed interfaces and wavefronts, depending on material optical properties. Knowledge of the velocity history allows for the determination of the pressure achieved during compression. Such a VISAR analysis is often based on Fourier transform techniques and assumes that the recorded interferograms are free from image distortions. In this paper, we describe the VISAR diagnostic installed at the HED-HIBEF instrument located at the European XFEL along with its calibration and characterization. It comprises a two-color (532, 1064 nm), three-arm (with three velocity sensitivities) line imaging system. We provide a procedure to correct VISAR images for geometric distortions and evaluate the performance of the system using Fourier analysis. We finally discuss the spatial and temporal calibrations of the diagnostic. As an example, we compare the pressure extracted from the VISAR analysis of shock-compressed polyimide and silicon.

Research Organization:
SLAC National Accelerator Laboratory (SLAC), Menlo Park, CA (United States)
Sponsoring Organization:
USDOE National Nuclear Security Administration (NNSA); USDOE Office of Science (SC), Fusion Energy Sciences (FES); National Science Foundation (NSF)
Grant/Contract Number:
AC02-76SF00515; AC52-07NA27344; 89233218CNA000001; NA0004089; NA0003856; SC0024640; NA0004234
OSTI ID:
2575177
Alternate ID(s):
OSTI ID: 2585332
Journal Information:
Review of Scientific Instruments, Journal Name: Review of Scientific Instruments Journal Issue: 7 Vol. 96; ISSN 1089-7623; ISSN 0034-6748
Publisher:
American Institute of Physics (AIP)Copyright Statement
Country of Publication:
United States
Language:
English

References (39)

Design, performance and application of a line-imaging velocity interferometer system for any reflector coupled with a streaked optical pyrometer system at the Shenguang-II upgrade laser facility journal November 2023
The viscosity of liquid iron at the physical conditions of the Earth's core journal April 1998
Ultrabright X-ray laser scattering for dynamic warm dense matter physics journal March 2015
Phase transition lowering in dynamically compressed silicon journal September 2018
Burning plasma achieved in inertial fusion journal January 2022
Understanding dense hydrogen at planetary conditions journal September 2020
The development of the VISAR, and its use in shock compression science conference January 2000
Axial Yield Strengths and Two Successive Phase Transition Stresses for Crystalline Silicon journal April 1971
Correction to the velocity‐per‐fringe relationship for the VISAR interferometer journal August 1974
Line-imaging velocimeter for shock diagnostics at the OMEGA laser facility journal November 2004
Accuracy limits and window corrections for photon Doppler velocimetry journal January 2007
Streaked optical pyrometer system for laser-driven shock-wave experiments on OMEGA journal March 2007
Analysis of the laser velocity interferometer journal August 1975
Heterogeneous flow and brittle failure in shock-compressed silicon journal October 2013
Determining the refractive index of shocked [100] lithium fluoride to the limit of transmissibility journal July 2014
Exploring Mbar shock conditions and isochorically heated aluminum at the Matter in Extreme Conditions end station of the Linac Coherent Light Source (invited) journal November 2014
Direct-drive inertial confinement fusion: A review journal November 2015
Absolute calibration of the OMEGA streaked optical pyrometer for temperature measurements of compressed materials journal November 2016
Properties of hydrogen, helium, and silicon dioxide mixtures in giant planet interiors journal April 2017
The design of a line velocity interferometer for any reflector for inertial confinement experiments on the Z-machine journal April 2020
Imaging velocity interferometer system for any reflector (VISAR) diagnostics for high energy density sciences journal January 2023
Shock compression experiments using the DiPOLE 100-X laser on the high energy density instrument at the European x-ray free electron laser: Quantitative structural analysis of liquid Sn journal April 2024
Progress in warm dense matter study with applications to planetology journal May 2014
Shock-compressed silicon: Hugoniot and sound speed up to 2100 GPa journal March 2021
Hugoniot equation-of-state and structure of laser-shocked polyimide C22H10N2O5 journal February 2022
Theoretical study of high-pressure orthorhombic silicon journal December 1993
Pressure dependence of the Imma phase of silicon journal July 1994
Anharmonic and Anomalous Trends in the High-Pressure Phase Diagram of Silicon journal March 2019
Achievement of Target Gain Larger than Unity in an Inertial Fusion Experiment journal February 2024
Shock-Induced Transformation of Liquid Deuterium into a Metallic Fluid journal June 2000
Shock-Induced Transformation of A l 2 O 3 and LiF into Semiconducting Liquids journal July 2003
The High Energy Density Scientific Instrument at the European XFEL journal August 2021
A robust in-situ warp-correction algorithm for VISAR streak camera data at the National Ignition Facility conference February 2015
Upgrades to the VISAR-streaked optical pyrometer (SOP) system on NIF conference August 2015
Symmetric Inertial Confinement Fusion Implosions at Ultra-High Laser Energies journal January 2010
Shock compression of stishovite and melting of silica at planetary interior conditions journal January 2015
Interiors of Giant Planets Inside and Outside the Solar System journal October 1999
Insulator-metal transition in dense fluid deuterium journal August 2018
Interspecimen Comparison of the Refractive Index of Fused Silica*,† journal January 1965