Identifying Anomalous DESI Galaxy Spectra with a Variational Autoencoder
Journal Article
·
· No journal information
more »
- University Coll. London
- Carnegie Mellon U.
- LBL, Berkeley
- Boston U.
- Laguna U., Tenerife; IAC, La Laguna
- Rochester U.
- Milan U.; Brera Observ.
- UNAM, Mexico
- San Diego State U.; Natl. Solar Observ., Tucson
- Natl. Solar Observ., Tucson
- Andes U., Bogota
- ICE, Bellaterra; Portsmouth U., ICG
- Fermilab
- Chicago U., KICP; Ohio State U.
- Queensland U.
- U. Texas, Dallas
- Southern Methodist U.
- UC, Irvine
- LPNHE, Paris
- ICREA, Barcelona; Barcelona, IFAE
- Siena Coll., Loudonville
- Portsmouth U., ICG
- Granada U., Theor. Phys. Astrophys.
- Barcelona, Polytechnic U.
- Sejong U.
- Madrid, CIEMAT
- Michigan U.
- IAC, La Laguna; Laguna U., Tenerife; ICE, Bellaterra
- Beijing Observ.
The tens of millions of spectra being captured by the Dark Energy Spectroscopic Instrument (DESI) provide tremendous discovery potential. In this work we show how Machine Learning, in particular Variational Autoencoders (VAE), can detect anomalies in a sample of approximately 200,000 DESI spectra comprising galaxies, quasars and stars. We demonstrate that the VAE can compress the dimensionality of a spectrum by a factor of 100, while still retaining enough information to accurately reconstruct spectral features. We then detect anomalous spectra as those with high reconstruction error and those which are isolated in the VAE latent representation. The anomalies identified fall into two categories: spectra with artefacts and spectra with unique physical features. Awareness of the former can help to improve the DESI spectroscopic pipeline; whilst the latter can lead to the identification of new and unusual objects. To further curate the list of outliers, we use the Astronomaly package which employs Active Learning to provide personalised outlier recommendations for visual inspection. In this work we also explore the VAE latent space, finding that different object classes and subclasses are separated despite being unlabelled. We demonstrate the interpretability of this latent space by identifying tracks within it that correspond to various spectral characteristics. For example, we find tracks that correspond to increasing star formation and increase in broad emission lines along the Balmer series. In upcoming work we hope to apply the methods presented here to search for both systematics and astrophysically interesting objects in much larger datasets of DESI spectra.
- Research Organization:
- UNAM, Mexico; LPNHE, Paris; Queensland U.; ICREA, Barcelona; ICE, Bellaterra; Rochester U.; Chicago U., KICP; Siena Coll., Loudonville; University Coll. London; Sejong U.; Carnegie Mellon U.; Andes U., Bogota; U. Texas, Dallas; IAC, La Laguna; Portsmouth U., ICG; UC, Irvine; Granada U., Theor. Phys. Astrophys.; San Diego State U.; Boston U.; Brera Observ.; Barcelona, IFAE; Milan U.; Beijing Observ.; Natl. Solar Observ., Tucson; Madrid, CIEMAT; Ohio State U.; Michigan U.; Lawrence Berkeley National Laboratory (LBNL), Berkeley, CA (United States); Barcelona, Polytechnic U.; Southern Methodist U.; Laguna U., Tenerife; Fermi National Accelerator Laboratory (FNAL), Batavia, IL (United States)
- Sponsoring Organization:
- US Department of Energy
- DOE Contract Number:
- 89243024CSC000002
- OSTI ID:
- 2572034
- Report Number(s):
- FERMILAB-PUB-25-0117-PPD; oai:inspirehep.net:2937997; arXiv:2506.17376
- Journal Information:
- No journal information, Journal Name: No journal information
- Country of Publication:
- United States
- Language:
- English
Similar Records
Dimensionality Reduction of SDSS Spectra with Variational Autoencoders
Variational AutoEncoders Reveal Intensifying GPP Extremes in Continental United States based on CESM2 Simulations
Journal Article
·
Wed Jul 01 00:00:00 EDT 2020
· The Astronomical Journal (Online)
·
OSTI ID:23013277
Variational AutoEncoders Reveal Intensifying GPP Extremes in Continental United States based on CESM2 Simulations
Conference
·
Sat Nov 01 00:00:00 EDT 2025
·
OSTI ID:3009436