The globus compute dataset: An open function-as-a-service dataset from the edge to the cloud
Journal Article
·
· Future Generations Computer Systems
- Univ. of Chicago, IL (United States); Argonne National Laboratory (ANL), Argonne, IL (United States)
- Univ. of Chicago, IL (United States)
- Argonne National Laboratory (ANL), Argonne, IL (United States)
- Northeastern Univ., Boston, MA (United States)
- Argonne National Laboratory (ANL), Argonne, IL (United States); Univ. of Chicago, IL (United States)
Here we present a unique function-as-a-service (FaaS) dataset capturing the use of the Globus Compute (previously funcX) platform. Globus Compute implements a federated model via which users may deploy endpoints on arbitrary remote computers, from the edge to high performance computing (HPC) cluster, and they may then invoke Python functions on those endpoints via a reliable cloud -hosted service. The dataset covers 31 weeks and includes 2121472 task submissions from 252 users executed on 580 remote computing endpoints. It includes 277386 registered functions. We describe the dataset and various observations, some that are similar to other FaaS datasets, for example, that 74% of tasks run for less than 1 s, and some that are unique to Globus Compute, for example, that endpoints are used in different ways and that the majority of functions are related to scientific computing and machine learning. To the best of our knowledge, this dataset represents the first federated FaaS dataset that includes user workloads, distributed computing endpoints, and analysis of registered function bodies. We expect the dataset to be useful for researching FaaS architectures, workload modeling, container warming, and other distributed computing architectures.
- Research Organization:
- Argonne National Laboratory (ANL), Argonne, IL (United States)
- Sponsoring Organization:
- National Science Foundation (NSF); USDOE
- Grant/Contract Number:
- AC02-06CH11357
- OSTI ID:
- 2571432
- Journal Information:
- Future Generations Computer Systems, Journal Name: Future Generations Computer Systems Vol. 153; ISSN 0167-739X
- Publisher:
- ElsevierCopyright Statement
- Country of Publication:
- United States
- Language:
- English
Similar Records
funcX: Federated Function as a Service for Science
XaaS: Acceleration as a Service to Enable Productive High-Performance Cloud Computing
Journal Article
·
Wed Sep 21 20:00:00 EDT 2022
· IEEE Transactions on Parallel and Distributed Systems
·
OSTI ID:2375879
XaaS: Acceleration as a Service to Enable Productive High-Performance Cloud Computing
Journal Article
·
Mon Apr 01 20:00:00 EDT 2024
· Computing in Science and Engineering
·
OSTI ID:2545755