Skip to main content
U.S. Department of Energy
Office of Scientific and Technical Information

Remarks on the Cauchy problem for Schroedinger-type equations

Journal Article · · Communications in Partial Differential Equations
OSTI ID:255087
In this paper we consider the Cauchy problem for the Schroedinger-type equation ({partial_derivative}{sub t} + i{Sigma}{sup d}{sub j,k=1} D{sub j}a{sup jk}(x)D{sub k} + {Sigma}{sup d}{sub j=1} {sup bj}(t,x)D{sub j} + c(t,x)) u = f, (t,x) {element_of} (O,T) x R{sup d}{sub x}, u(O,x) = u{sub o}(x), x {element_of} R{sup d} where D{sub j} = -{radical}-1{partial_derivative}{sub j} = -{radical}1{partial_derivative}/{partial_derivative}x{sub j}.
OSTI ID:
255087
Journal Information:
Communications in Partial Differential Equations, Journal Name: Communications in Partial Differential Equations Journal Issue: 1-2 Vol. 21; ISSN CPDIDZ; ISSN 0360-5302
Country of Publication:
United States
Language:
English

Similar Records

Inhomogeneous critical nonlinear Schroedinger equations with a harmonic potential
Journal Article · Thu Apr 15 00:00:00 EDT 2010 · Journal of Mathematical Physics · OSTI ID:21335947

On an initial-boundary value problem for a class of nonlinear Schroedinger equations
Journal Article · Mon Dec 30 23:00:00 EST 1996 · Communications in Partial Differential Equations · OSTI ID:437115

Existence, uniqueness, and regularity of classical solutions of the Mullins-Sekerka problem
Journal Article · Mon Dec 30 23:00:00 EST 1996 · Communications in Partial Differential Equations · OSTI ID:530798