Remarks on the Cauchy problem for Schroedinger-type equations
Journal Article
·
· Communications in Partial Differential Equations
OSTI ID:255087
- Kyoto Univ., Kyoto (Japan)
In this paper we consider the Cauchy problem for the Schroedinger-type equation ({partial_derivative}{sub t} + i{Sigma}{sup d}{sub j,k=1} D{sub j}a{sup jk}(x)D{sub k} + {Sigma}{sup d}{sub j=1} {sup bj}(t,x)D{sub j} + c(t,x)) u = f, (t,x) {element_of} (O,T) x R{sup d}{sub x}, u(O,x) = u{sub o}(x), x {element_of} R{sup d} where D{sub j} = -{radical}-1{partial_derivative}{sub j} = -{radical}1{partial_derivative}/{partial_derivative}x{sub j}.
- OSTI ID:
- 255087
- Journal Information:
- Communications in Partial Differential Equations, Journal Name: Communications in Partial Differential Equations Journal Issue: 1-2 Vol. 21; ISSN CPDIDZ; ISSN 0360-5302
- Country of Publication:
- United States
- Language:
- English
Similar Records
Inhomogeneous critical nonlinear Schroedinger equations with a harmonic potential
On an initial-boundary value problem for a class of nonlinear Schroedinger equations
Existence, uniqueness, and regularity of classical solutions of the Mullins-Sekerka problem
Journal Article
·
Thu Apr 15 00:00:00 EDT 2010
· Journal of Mathematical Physics
·
OSTI ID:21335947
On an initial-boundary value problem for a class of nonlinear Schroedinger equations
Journal Article
·
Mon Dec 30 23:00:00 EST 1996
· Communications in Partial Differential Equations
·
OSTI ID:437115
Existence, uniqueness, and regularity of classical solutions of the Mullins-Sekerka problem
Journal Article
·
Mon Dec 30 23:00:00 EST 1996
· Communications in Partial Differential Equations
·
OSTI ID:530798