Reduction of Pacific Double‐ITCZ Bias by Convection Parameterization in NCAR CESM2.2
- Scripps Institution of Oceanography La Jolla CA USA
The impact of convective closure on the double‐ITCZ bias in the NCAR CESM2.2 is investigated in this study. The standard CESM2.2 simulates a remarkable double‐ITCZ bias in the central and eastern Pacific, especially in boreal winter and spring. Modifications to the closure in convection parameterization scheme greatly reduce the double‐ITCZ bias in all seasons, demonstrating that convection parameterization can substantially influence the double‐ITCZ bias in CESM2.2. Further analyses suggest that convection parameterization can modulate the tropical atmosphere‐ocean feedback processes, through which it influences the SST in the southern ITCZ region and hence the double‐ITCZ bias. The changes in the upper ocean temperature advection induced by modified convective closure plays important roles in reducing the warm SST bias and double‐ITCZ precipitation bias in the southern ITCZ region. The modified convective closure improves the low‐level cloud and shortwave cloud radiative forcing in the southeastern Pacific. However, surface heat flux plays only a limited role in reducing warm SST bias and double ITCZ bias because the impacts of shortwave radiation changes are largely canceled by changes in longwave radiation and latent heat flux.
- Sponsoring Organization:
- USDOE
- Grant/Contract Number:
- SC0022064; SC0023069
- OSTI ID:
- 2498417
- Journal Information:
- Journal of Advances in Modeling Earth Systems, Journal Name: Journal of Advances in Modeling Earth Systems Journal Issue: 1 Vol. 17; ISSN 1942-2466
- Publisher:
- American Geophysical Union (AGU)Copyright Statement
- Country of Publication:
- United States
- Language:
- English