Mechanically Reinforced Pseudosolid Polyelectrolyte Membranes via Layer-by-Layer Assembly for High-Performing Lithium-Metal Batteries
Journal Article
·
· Advanced Functional Materials
- Oak Ridge National Laboratory (ORNL), Oak Ridge, TN (United States)
- Univ. of Tennessee, Knoxville, TN (United States)
- Oak Ridge National Laboratory (ORNL), Oak Ridge, TN (United States); Univ. of Tennessee, Knoxville, TN (United States)
Ionogels are emerging as high-potential pseudosolid electrolytes for lithium-metal batteries (LMBs), leveraging their intrinsic high ionic conductivity from entrapped ionic liquid (IL) electrolytes. However, their practical application is hindered by poor mechanical strength stemming from the confinement of ILs within a polymer matrix. To address this challenge, the formation of conformal polyion coatings with functional groups is reported to be relevant to LMBs’ application on ionogels, utilizing a layer-by-layer (LbL) assembly strategy. Here, this approach significantly enhances the mechanical strength (Young's modulus and tensile strength) and electrochemical performance of ionogels, owing to the tailored interface modifications introduced by functional groups’ specific conformal polyion coatings. The core of this methodology leverages the inherent ionic structure of ionogels to enable facile interface modification through Coulombic interactions between polyanions and polycations. These conformally coated interface functionalized membranes show improved electrochemical performance when integrated with cathode materials such as LiFePO4 (LFP) and LiNi0.8Mn0.1Co0.1O2 (NMC811) in an LMB configuration, underscoring their potential for robust, high-conductivity, pseudosolid membranes for LMB applications. These innovative pseudosolid membranes offer improved mechanical and electrochemical properties, leading to higher battery efficiency and safety, making them promising candidates for next-generation LMB technology.
- Research Organization:
- Oak Ridge National Laboratory (ORNL), Oak Ridge, TN (United States)
- Sponsoring Organization:
- National Science Foundation (NSF); USDOE; USDOE Office of Science (SC), Basic Energy Sciences (BES). Materials Sciences & Engineering Division (MSE)
- Grant/Contract Number:
- AC05-00OR22725
- OSTI ID:
- 2491443
- Alternate ID(s):
- OSTI ID: 2504243
- Journal Information:
- Advanced Functional Materials, Journal Name: Advanced Functional Materials Vol. NA; ISSN 1616-301X
- Publisher:
- WileyCopyright Statement
- Country of Publication:
- United States
- Language:
- English
Similar Records
Layer-by-Layer Assembly Strategy for Reinforcing the Mechanical Strength of an Ionogel Electrolyte without Affecting Ionic Conductivity
Journal Article
·
Tue Dec 03 19:00:00 EST 2019
· ACS Applied Energy Materials
·
OSTI ID:1657987