Strain-tuned quantum criticality in electronic Potts-nematic systems
Journal Article
·
· Physical Review. B
- University of Minnesota, Minneapolis, MN (United States)
Motivated by recent observations of threefold rotational symmetry breaking in twisted moiré systems, cold-atom optical lattices, quantum Hall systems, and triangular antiferromagnets, we phenomenologically investigate the strain-temperature phase diagram of the electronic 3-state Potts-nematic order. While in the absence of strain the quantum Potts-nematic transition is first-order, quantum critical points (QCP) emerge when uniaxial strain is applied, whose nature depends on whether the strain is compressive or tensile. In one case, the nematic amplitude jumps between two non-zero values while the nematic director remains pinned, leading to a symmetry-preserving metanematic transition that terminates at a quantum critical end-point. For the other type of strain, the nematic director unlocks from the strain direction and spontaneously breaks an in-plane twofold rotational symmetry, which in twisted moiré superlattices triggers an electric polarization. Such a piezoelectric transition changes from first to second-order upon increasing strain, resulting in a quantum tricritical point. Using a Hertz-Millis approach, we show that these QCPs share interesting similarities with the widely studied Ising-nematic QCP. The existence of three minima in the nematic action also leaves fingerprints in the strain-nematic hysteresis curves, which display multiple loops. At non-zero temperatures, because the upper critical dimension of the 3-state Potts model is smaller than three, the Potts-nematic transition is expected to remain first-order in 3D, but to change to second-order in 2D. As a result, the 2D strain-temperature phase diagram displays two first-order transition wings bounded by lines of critical end-points or tricritical points, reminiscent of the phase diagram of metallic ferromagnets. Furthermore, we discuss how our results can be used to unambiguously identify spontaneous Potts-nematic order.
- Research Organization:
- University of Minnesota, Minneapolis, MN (United States)
- Sponsoring Organization:
- USDOE Office of Science (SC), Basic Energy Sciences (BES). Materials Sciences & Engineering Division (MSE)
- Grant/Contract Number:
- SC0020045
- OSTI ID:
- 2478714
- Alternate ID(s):
- OSTI ID: 2421408
- Journal Information:
- Physical Review. B, Journal Name: Physical Review. B Journal Issue: 19 Vol. 107; ISSN 2469-9950
- Publisher:
- American Physical Society (APS)Copyright Statement
- Country of Publication:
- United States
- Language:
- English
Similar Records
Nematicity with a twist: Rotational symmetry breaking in a moiré superlattice
Strain tuning of vestigial three-state Potts nematicity in a correlated antiferromagnet
Journal Article
·
Tue Aug 04 20:00:00 EDT 2020
· Science Advances
·
OSTI ID:1645172
Strain tuning of vestigial three-state Potts nematicity in a correlated antiferromagnet
Journal Article
·
Wed Oct 09 20:00:00 EDT 2024
· Nature Physics
·
OSTI ID:3006428