Skip to main content
U.S. Department of Energy
Office of Scientific and Technical Information

A Review of Modeling Approaches for Predicting Frost Growth and Defrosting on Tube-Fin Heat Exchangers: Preprint

Conference ·
OSTI ID:2448280

Frost formation and growth on the evaporator surface is a common process that deteriorates the air-refrigerant heat transfer and restricts airflow. This degrades the performance of the vapor compression system by increasing temperature lift and air-side pressure drop. To accurately predict these effects during coil frosting, as well as the energy use and duration of the defrost process, there is a need to estimate the heat and mass transfer, momentum transport, and solid-liquid and liquid-vapor phase change. Therefore, in the past few decades, continuous effort has been made to model frosting and defrosting processes using approaches ranging from empirical correlations to computational fluid dynamic models. To provide a clearer overview for researchers, engineers, and manufacturers in this field, this paper provides a comprehensive literature review for frosting and defrosting models. The paper begins with theoretical background of frost formation and defrost processes, and then reviews the common modeling approaches in literature and their underlying assumptions when trying to account for various physical phenomenon. Based on the literature review, the most critical modeling effort for frost formation is the determination of frost densification rate and frost growth rate. Various methods to predict these two parameters are reviewed. Empirical correlations commonly used for frost density and thermal conductivity are presented and compared. For the defrost process, various multi-stage models have been proposed with different assumptions. Some assume the presence of air gap between the tube wall and the frost, while others consider the melted frost flow due to gravity. We also review physics-based and empirical approaches to integrate defrost models into heat pump models. We conclude by identifying research gaps and providing recommendations.

Research Organization:
National Renewable Energy Laboratory (NREL), Golden, CO (United States)
Sponsoring Organization:
USDOE Office of Energy Efficiency and Renewable Energy (EERE), Energy Efficiency Office. Building Technologies Office
DOE Contract Number:
AC36-08GO28308
OSTI ID:
2448280
Report Number(s):
NREL/CP-5500-89649; MainId:90428; UUID:eb78ed65-78cc-482f-96cb-b993c704dba1; MainAdminId:73740
Country of Publication:
United States
Language:
English

Similar Records

A transient analysis of frost formation on a parallel plate evaporator
Conference · Mon Dec 30 23:00:00 EST 1996 · OSTI ID:483919

Laboratory examination and seasonal analysis of frosting and defrosting losses for an air-to-air heat pump
Conference · Tue Dec 31 23:00:00 EST 1985 · OSTI ID:6860757

Frost sensor for use in defrost controls for refrigeration
Patent · Mon Dec 31 23:00:00 EST 2001 · OSTI ID:874815