Coupled model for liquid lithium plasma facing components
Journal Article
·
· Fusion Engineering and Design
- Princeton Plasma Physics Laboratory (PPPL), Princeton, NJ (United States)
Numerical analysis provides the design choice and operating window of liquid metal Plasma Facing Components (PFC) concepts. Coupled analysis of boundary plasma together with the surrounding boundary structures is required. Here, to achieve this goal, PPPL is developing a comprehensive multi-physics model for modeling of PFCs in fusion devices. The model includes the fluid-kinetic code SOLPS-ITER and the flow and heat transfer code CFX from ANSYS. SOLPS-ITER was augmented with a liquid metal boundary condition algorithm, allowing direct two-way coupling of the plasma analysis with the two-dimensional analytical slab flow model which includes heat convection in the liquid metal PFC. The target heat flux resulting from this coupled analysis is used as a boundary condition for detailed 3D Computational Fluid Dynamics (CFD) Magneto Hydro Dynamics (MHD) and heat transfer analysis. A new formulation of MHD equations is introduced in the numerical procedure ensuring current conservation of the discretized equations. Results of the 3D analysis are used for final validation of the coupled model. A PFC design where a porous wall is used to stabilize the liquid metal surface, while MHD drive is used to push the liquid metal flow inside the PFC, will be investigated in the regimes where vapor shielding is created for enhanced volumetric plasma heat dissipation.
- Research Organization:
- Princeton Plasma Physics Laboratory (PPPL), Princeton, NJ (United States)
- Sponsoring Organization:
- USDOE Office of Science (SC), Fusion Energy Sciences (FES)
- Grant/Contract Number:
- AC02-09CH11466
- OSTI ID:
- 2447388
- Alternate ID(s):
- OSTI ID: 2439491
- Journal Information:
- Fusion Engineering and Design, Journal Name: Fusion Engineering and Design Vol. 207; ISSN 0920-3796
- Publisher:
- ElsevierCopyright Statement
- Country of Publication:
- United States
- Language:
- English
Similar Records
Design and Analysis of Liquid Lithium Plasma Facing Components
Liquid lithium divertor analysis using coupled plasma material interaction model
Journal Article
·
Sun Apr 14 20:00:00 EDT 2024
· IEEE Transactions on Plasma Science
·
OSTI ID:2352436
Liquid lithium divertor analysis using coupled plasma material interaction model
Journal Article
·
Mon Nov 18 19:00:00 EST 2024
· Nuclear Materials and Energy
·
OSTI ID:2478177