Physics and chemistry from parsimonious representations: image analysis via invariant variational autoencoders
Journal Article
·
· npj Computational Materials
- Univ. of Tennessee, Knoxville, TN (United States)
- Pacific Northwest National Laboratory (PNNL), Richland, WA (United States)
- Oak Ridge National Laboratory (ORNL), Oak Ridge, TN (United States). Center for Nanophase Materials Sciences (CNMS)
- Pacific Northwest National Laboratory (PNNL), Richland, WA (United States); Univ. of Tennessee, Knoxville, TN (United States)
Electron, optical, and scanning probe microscopy methods are generating ever increasing volume of image data containing information on atomic and mesoscale structures and functionalities. This necessitates the development of the machine learning methods for discovery of physical and chemical phenomena from the data, such as manifestations of symmetry breaking phenomena in electron and scanning tunneling microscopy images, or variability of the nanoparticles. Variational autoencoders (VAEs) are emerging as a powerful paradigm for the unsupervised data analysis, allowing to disentangle the factors of variability and discover optimal parsimonious representation. Here, we summarize recent developments in VAEs, covering the basic principles and intuition behind the VAEs. The invariant VAEs are introduced as an approach to accommodate scale and translation invariances present in imaging data and separate known factors of variations from the ones to be discovered. We further describe the opportunities enabled by the control over VAE architecture, including conditional, semi-supervised, and joint VAEs. Several case studies of VAE applications for toy models and experimental datasets in Scanning Transmission Electron Microscopy are discussed, emphasizing the deep connection between VAE and basic physical principles. Python codes and datasets discussed in this article are available at https://github.com/saimani5/VAE-tutorials and can be used by researchers as an application guide when applying these to their own datasets.
- Research Organization:
- Oak Ridge National Laboratory (ORNL), Oak Ridge, TN (United States); Pacific Northwest National Laboratory (PNNL), Richland, WA (United States); University of Washington, Seattle, WA (United States)
- Sponsoring Organization:
- USDOE Laboratory Directed Research and Development (LDRD) Program; USDOE Office of Science (SC), Basic Energy Sciences (BES); USDOE Office of Science (SC), Basic Energy Sciences (BES). Scientific User Facilities (SUF)
- Grant/Contract Number:
- AC05-00OR22725; AC05-76RL01830; SC0019288
- OSTI ID:
- 2439897
- Alternate ID(s):
- OSTI ID: 2482271
OSTI ID: 2479744
OSTI ID: 2479749
- Report Number(s):
- PNNL-SA-197172
- Journal Information:
- npj Computational Materials, Journal Name: npj Computational Materials Journal Issue: 1 Vol. 10; ISSN 2057-3960
- Publisher:
- Nature Publishing GroupCopyright Statement
- Country of Publication:
- United States
- Language:
- English