Skip to main content
U.S. Department of Energy
Office of Scientific and Technical Information

An evaluation of the effectiveness of utilizing bioassays in the assessment of contaminated sites

Conference ·
OSTI ID:242304
; ; ;  [1]
  1. Environment Canada, Dartmouth, Nova Scotia (Canada)
The purpose of this study was to evaluate the battery of biological tests recommended by Environment Canada in the document ``A Review of Whole Organism Bioassays for Assessing the Quality of Soil, Freshwater Sediment and Freshwater in Canada`` for the assessment of contaminated sites. Soil and sediment samples were collected from three contaminated sites in the Atlantic Region and subjected to biological and chemical tests. Four bioassays were conducted on the soil samples: lettuce (Lactuca sativa) seedling emergence, algal (Selenastrum capricornutum) population growth inhibition, earthworm (Eisenia andrel) survival and inhibition of light output in Microtox (Vibrio fischeri). Soil samples collected from Makinsons, Newfoundland had elevated levels of PCBs, total petroleum hydrocarbons (TPH) and heavy metals and showed some toxicity in the algal population growth inhibition test. Samples from the Weldon, New Brunswick site were high in TPH and were marginally toxic to Microtox and lettuce seedlings. The earthworm survival test did not appear sensitive to any of the contaminated soil samples. Freshwater sediment samples, collected from Five Island Lake, Nova Scotia had elevated PCB and heavy metal concentrations. These samples underwent four biological tests: midge (Chironomus tentans) survival, amphipod (Hyalella azteca) survival, algal population growth inhibition and Microtox. At 100% concentration, the sediment was toxic to the first three species, with toxicities ranging from marginal to high. For all samples, the bioassay results were compared to chemical analyses and, in most cases, there was a positive correlation between contaminant concentrations and toxicity.
OSTI ID:
242304
Report Number(s):
CONF-9511137--; ISBN 1-880611-03-1
Country of Publication:
United States
Language:
English