Due to its high breakdown electric field, the ultra-wide bandgap semiconductor AlGaN has garnered much attention recently as a promising channel material for next-generation high electron mobility transistors (HEMTs). A comprehensive experimental study of the effects of Al composition x on the transport and structural properties is lacking. We report the charge control and transport properties of polarization-induced 2D electron gases (2DEGs) in strained AlGaN quantum well channels in molecular-beam-epitaxy-grown AlN/AlxGa1-xN/AlN double heterostructures by systematically varying the Al content from x = 0 (GaN) to x = 0.74, spanning energy bandgaps of the conducting HEMT channels from 3.49 to 4.9 eV measured by photoluminescence. This results in a tunable 2DEG density from 0 to 3.7 × 1013 cm2. The room temperature mobilities of x ≥ 0.25 AlGaN channel HEMTs were limited by alloy disorder scattering to below 50 cm2/(V.s) for these 2DEG densities, leaving ample room for further heterostructure design improvements to boost mobilities. A characteristic alloy fluctuation energy of ≥1.8 eV for electron scattering in AlGaN alloy is estimated based on the temperature dependent electron transport experiments.
@article{osti_2421816,
author = {Singhal, Jashan and Chaudhuri, Reet and Hickman, Austin and Protasenko, Vladimir and Xing, Huili Grace and Jena, Debdeep},
title = {Toward AlGaN channel HEMTs on AlN: Polarization-induced 2DEGs in AlN/AlGaN/AlN heterostructures},
annote = {Due to its high breakdown electric field, the ultra-wide bandgap semiconductor AlGaN has garnered much attention recently as a promising channel material for next-generation high electron mobility transistors (HEMTs). A comprehensive experimental study of the effects of Al composition x on the transport and structural properties is lacking. We report the charge control and transport properties of polarization-induced 2D electron gases (2DEGs) in strained AlGaN quantum well channels in molecular-beam-epitaxy-grown AlN/AlxGa1-xN/AlN double heterostructures by systematically varying the Al content from x = 0 (GaN) to x = 0.74, spanning energy bandgaps of the conducting HEMT channels from 3.49 to 4.9 eV measured by photoluminescence. This results in a tunable 2DEG density from 0 to 3.7 × 1013 cm2. The room temperature mobilities of x ≥ 0.25 AlGaN channel HEMTs were limited by alloy disorder scattering to below 50 cm2/(V.s) for these 2DEG densities, leaving ample room for further heterostructure design improvements to boost mobilities. A characteristic alloy fluctuation energy of ≥1.8 eV for electron scattering in AlGaN alloy is estimated based on the temperature dependent electron transport experiments.},
doi = {10.1063/5.0121195},
url = {https://www.osti.gov/biblio/2421816},
journal = {APL Materials},
issn = {ISSN 2166-532X},
number = {11},
volume = {10},
place = {United States},
publisher = {American Institute of Physics (AIP)},
year = {2022},
month = {11}}