Renewable low viscosity polyester-polyols for biodegradable thermoplastic polyurethanes
Journal Article
·
· Journal of Applied Polymer Science
- Univ. of California, San Diego, CA (United States); OSTI
- Univ. of California, San Diego, CA (United States)
- Algenesis Materials, San Diego, CA (United States)
- Algenesis Materials, San Diego, CA (United States); Univ. of California, San Diego, CA (United States)
In the transition to renewably sourced, biodegradable polymers, the preparation of low viscosity polyester-polyols has posed a challenge for renewable polyurethane (PU) development. Low viscosity polyols not only reduce the requirement for high process temperatures but also decrease manufacturing time. In our efforts to incorporate increasing ratios of bio-based monomers into renewable PUs, we mixed diacids such as even carbon sebacic acid and odd carbon azelaic acid along with a renewable diol. This provided library of 2000 g/mol molecular weight polyester-polyols, and structures were established by 1H and 13C NMR analysis. The prepared polyester-polyols offered lower viscosity and enable lower fabrication temperatures to make TPUs, and their structure and material metrics were evaluated. The formation of TPUs is ascertained from FTIR and NMR analysis. The final TPUs displayed good physical and mechanical properties. Further, these TPUs exhibited Tg in the range of -56.5 to -39.7°C, corresponding to TPU soft block structure, and Tm between 98.3 and 105.1°C originating from the hard segment. Prepared TPUs exhibit excellent biodegradation under compost environmental conditions. These TPUs showed up to 57% decrease in molecular weight by GPC analysis after 9 weeks of biodegradation, and respirometer analysis displayed up to 97% biodegradation over 120 days.
- Research Organization:
- Univ. of California, San Diego, CA (United States)
- Sponsoring Organization:
- USDOE Office of Energy Efficiency and Renewable Energy (EERE); National Science Foundation (NSF)
- Grant/Contract Number:
- EE0008246; EE0009295
- OSTI ID:
- 2418604
- Alternate ID(s):
- OSTI ID: 1885628
OSTI ID: 2503944
- Journal Information:
- Journal of Applied Polymer Science, Journal Name: Journal of Applied Polymer Science Journal Issue: 43 Vol. 139; ISSN 0021-8995
- Publisher:
- WileyCopyright Statement
- Country of Publication:
- United States
- Language:
- English
Similar Records
High Bio-Content Thermoplastic Polyurethanes from Azelaic Acid
Journal Article
·
Sat Jul 30 00:00:00 EDT 2022
· Molecules
·
OSTI ID:1879242