Thermodynamic Analysis of Silk Fibroin–Graphite Hybrid Materials and Their Morphology
- Univ. of Washington, Seattle, WA (United States)
- Pacific Northwest National Laboratory (PNNL), Richland, WA (United States); Univ. of Washington, Seattle, WA (United States)
- Univ. of Washington, Seattle, WA (United States); North Carolina State University, Raleigh, NC (United States)
Silk fibroin (SF) is a β-sheet-rich protein that is responsible for the remarkable tensile strength of silk. In addition to its mechanical properties, SF is biocompatible and biodegradable, making it an attractive candidate for use in biotic/abiotic hybrid materials. A pairing of particular interest is the use of SF with graphene-based nanomaterials (GBNs). The properties of this interface drive the formation of well-ordered nanostructures and can improve the electronic properties of the resulting hybrid. It was previously demonstrated that SF can form lamellar nanostructures in the presence of graphite; however, the equilibrium morphology and associated driving interactions are not fully understood. Here, in this study, we characterize these interactions between SF and SF lamellar with graphite using molecular dynamics (MD) simulations and umbrella sampling (US). We find that SF lamellar nanostructures have strong orientational and spatial preferences on graphite that are driven by the hydrophobic effect, destabilizing solvent–protein interactions and stabilizing protein–protein and protein–graphite interactions. Finally, we show how careful consideration of these underlying interactions can be applied to rationally modify the nanostructure morphology.
- Research Organization:
- Pacific Northwest National Laboratory (PNNL), Richland, WA (United States)
- Sponsoring Organization:
- USDOE Office of Science (SC), Basic Energy Sciences (BES). Materials Sciences & Engineering Division (MSE)
- Grant/Contract Number:
- AC05-76RL01830; SC0019288
- OSTI ID:
- 2406995
- Report Number(s):
- PNNL-SA--193525
- Journal Information:
- Journal of Physical Chemistry. B, Journal Name: Journal of Physical Chemistry. B Journal Issue: 10 Vol. 128; ISSN 1520-6106
- Publisher:
- American Chemical SocietyCopyright Statement
- Country of Publication:
- United States
- Language:
- English
Similar Records
Silk fibroin/pullulan blend films: Preparation and characterization
Silk Fibroin as an Organic Polymer for Controlled Drug Delivery