Evaluating the effects of heatwave events on hydrological processes in the contiguous United States (2003–2022)
Journal Article
·
· Journal of Hydrology
- Univ. of Tennessee, Knoxville, TN (United States); Oak Ridge National Laboratory (ORNL), Oak Ridge, TN (United States)
- Oak Ridge National Laboratory (ORNL), Oak Ridge, TN (United States)
- Univ. of Tennessee, Knoxville, TN (United States)
- Nanyang Technological Univ. (Singapore)
Extreme heat and drought conditions are affecting water availability in many regions worldwide, leading to negative impacts on human societies, agriculture, and ecosystems. However, current research lacks comprehensive spatiotemporal analysis examining the interplay between multiple hydrological factors and heatwave events, especially in the context of climate change. This research broadly pertains to understanding the dynamics of hydrological factors and their potential responses to heatwave during warm seasons across the contiguous United States for the period from 2003 to 2022. Utilizing data from the Global Land Data Assimilation System (GLDAS), we analyzed surface runoff, evapotranspiration (ET), precipitation, Groundwater Storage (GWS), Root Zone Soil Moisture (RZSM), and Total Water Storage (TWS) to discern annual patterns and the impacts of heatwave. Further, the spatial patterns of heatwave highlighted a higher occurrence in the western, central, and northeastern U.S., with longer average durations in the western and south-central regions. These events are predominantly dry, characterized by low Relative Humidity (RH), except in the southeastern U.S., where heatwave coincide with high RH levels. Post-heatwave analysis indicated a reduction in GWS, TWS, RZSM, and ET, alongside an increase in surface runoff, RH, and precipitation. An in-depth examination of rainfall and temperature dynamics during heatwave revealed weak correlations between rainfall and temperature, as well as between rainfall and heatwave duration, highlighting the complex nature of these interactions. The study also found an enhanced probability of rainfall following heatwave, particularly in the eastern regions, drawing attention to the potential for increased flood risks post-heatwave. Our findings contribute to the growing body of knowledge on the impacts of heatwave on hydrological factors, providing valuable insights for climate change adaptation and water resource management strategies.
- Research Organization:
- Oak Ridge National Laboratory (ORNL), Oak Ridge, TN (United States)
- Sponsoring Organization:
- USDOE; USDOE Office of Science (SC), Biological and Environmental Research (BER)
- Grant/Contract Number:
- AC05-00OR22725
- OSTI ID:
- 2397411
- Alternate ID(s):
- OSTI ID: 2429128
- Journal Information:
- Journal of Hydrology, Journal Name: Journal of Hydrology Vol. 637; ISSN 0022-1694
- Publisher:
- ElsevierCopyright Statement
- Country of Publication:
- United States
- Language:
- English
Similar Records
Effects of Climate Variability and Change on Mountain Water Resources in the Western U.S.
Enhancing Hydrologic Design by Next-Generation Intensity-Duration-Frequency Curves Considering Snowmelt and Climate Nonstationarity
Book
·
Wed Jun 01 00:00:00 EDT 2005
·
OSTI ID:896699
Enhancing Hydrologic Design by Next-Generation Intensity-Duration-Frequency Curves Considering Snowmelt and Climate Nonstationarity
Conference
·
Thu May 16 00:00:00 EDT 2019
·
OSTI ID:1523386