Behavior of large diameter wire ropes
- Loughborough Univ. of Technology (United Kingdom)
- South Bank Univ., London (United Kingdom)
The paper reviews the recent theoretical work of the present authors as regards the prediction of the 2 {times} 2 stiffness matrix describing axial/torsional coupling of large diameter wire ropes. The theoretical analysis is based on results from a previously reported orthotropic sheet model which enables one to obtain estimates of the coefficients in the 2 {times} 2 stiffness matrix describing the axial/torsional coupling of the constituent spiral strands. The proposed model can (unlike previously available theories for wire ropes) cater for the presence of interwire friction and the various wire rope stiffness coefficients corresponding to both no-slip and full-slip regimes can be calculated. The no-slip regime corresponds to cases when an axially preloaded wire rope experiences cyclic variations of external load which are small enough not to induce initiation of gross interwire slippage within the constituent spiral strands. For sufficiently large values of range/mean axial load ratios, on the other hand, gross interwire slippage takes place and the effects of interwire friction on wire rope stiffness coefficients will be negligibly small compared with the effects due to the force changes in the wires themselves. Theoretical models have been developed for two types of wire ropes, i.e., those with an independent wire rope core (IWRC) or the types with a fiber core: the salient features for both approaches are reviewed with an emphasis on the characteristics of various wire rope constructions. In addition, experimental results from other sources are found to provide encouraging support for the theoretical predictions in a number of areas.
- OSTI ID:
- 237941
- Report Number(s):
- CONF-950604--; ISBN 1-880653-18-4
- Country of Publication:
- United States
- Language:
- English
Similar Records
Characteristics of locked coil strands under free bending
Determination of recovery length in spiral strands