An Experimental Investigation of Sintered Particle Effect on Heat Transfer Performance in an “Annular Flow” Evaporation Tube
- Univ. of Missouri, Columbia, MO (United States)
- Univ. of Missouri, Columbia, MO (United States); Univ. of Technology, Baghdad (Iraq)
- Univ. of Maryland, College Park, MD (United States)
- Oak Ridge National Laboratory (ORNL), Oak Ridge, TN (United States)
Wicking structures have been widely used within passive heat transfer devices with high heat fluxes, such as heat pipes, to enhance their thermal performance. While wicking structures promote capillary pumping of the working fluid and thin film evaporation, they can result in capillary evaporation and further enhance the evaporation heat transfer. In this study, a 0.5 mm thick layer of 105 µm sintered copper particles was added to the inner wall of a copper tube, aiming to form an “annular flow” and enhance the heat transfer characteristics by taking advantage of thin film and capillary evaporation. Acetone was chosen as the working fluid, and the performance of an evaporation tube was tested for power inputs of 10, 30, 50, and 70 W. For each power input, trials were run at inclination angles varying from -90 deg to 90 deg to investigate the capillary effects. The temperature measurements showed that the temperature distribution along the evaporation tube is always downward sloping, meaning the temperature at the fluid inlet is larger than the outlet. In conclusion, results show that an “annular flow” formed by a thin layer of sintered particles can promote thin film and capillary evaporation and, therefore, boost the evaporation heat transfer coefficient.
- Research Organization:
- Oak Ridge National Laboratory (ORNL), Oak Ridge, TN (United States)
- Sponsoring Organization:
- USDOE Office of Energy Efficiency and Renewable Energy (EERE), Energy Efficiency Office. Building Technologies Office; USDOE Office of Science (SC), Basic Energy Sciences (BES). Scientific User Facilities (SUF); US Department of the Navy, Office of Naval Research (ONR)
- Grant/Contract Number:
- AC05-00OR22725
- OSTI ID:
- 2345283
- Journal Information:
- Journal of Thermal Science and Engineering Applications, Journal Name: Journal of Thermal Science and Engineering Applications Journal Issue: 7 Vol. 16; ISSN 1948-5085
- Publisher:
- ASMECopyright Statement
- Country of Publication:
- United States
- Language:
- English
Similar Records
Energy conservation practices - vertical tube foam evaporation
BOILING OF FREON-114 IN A THREE-FOOT STRAIGHT TUBE EVAPORATOR