skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Neutron radiography experiments for verification of soluble boron mixing and transport modeling under natural circulation conditions

Conference ·
OSTI ID:234259
;  [1]
  1. Pennsylvania State Univ., University Park, PA (United States)

The use of neutron radiography for visualization of fluid flow through flow visualization modules has been very successful. Current experiments at the Penn State Breazeale Reactor serve to verify the mixing and transport of soluble boron under natural flow conditions as would be experienced in a pressurized water reactor. Different flow geometries have been modeled including holes, slots, and baffles. Flow modules are constructed of aluminum box material 1 1/2 inches by 4 inches in varying lengths. An experimental flow system was built which pumps fluid to a head tank and natural circulation flow occurs from the head tank through the flow visualization module to be radiographed. The entire flow system is mounted on a portable assembly to allow placement of the flow visualization module in front of the neutron beam port. A neutron-transparent fluorinert fluid is used to simulate water at different densities. Boron is modeled by gadolinium oxide powder as a tracer element, which is placed in a mixing assembly and injected into the system by remote operated electric valve, once the reactor is at power. The entire sequence is recorded on real-time video. Still photographs are made frame-by-frame from the video tape. Computers are used to digitally enhance the video and still photographs. The data obtained from the enhancement will be used for verification of simple geometry predictions using the TRAC and RELAP thermal-hydraulic codes. A detailed model of a reactor vessel inlet plenum, downcomer region, flow distribution area and core inlet is being constructed to model the AP600 plenum. Successive radiography experiments of each section of the model under identical conditions will provide a complete vessel/core model for comparison with the thermal-hydraulic codes.

OSTI ID:
234259
Report Number(s):
CONF-960306-; ISBN 0-7918-1226-X; TRN: IM9624%%300
Resource Relation:
Conference: ICONE 4: ASME/JSME international conference on nuclear engineering, New Orleans, LA (United States), 10-13 Mar 1996; Other Information: PBD: 1996; Related Information: Is Part Of ICONE-4: Proceedings. Volume 1 -- Part A: Basic technological advances; Rao, A.S. [ed.] [General Electric Nuclear Energy, San Jose, CA (United States)]; Duffey, R.B. [ed.] [Brookhaven National Lab., Upton, NY (United States)]; Elias, D. [ed.] [Commonwealth Edison, Downers Grove, IL (United States)]; PB: 534 p.
Country of Publication:
United States
Language:
English