Skip to main content
U.S. Department of Energy
Office of Scientific and Technical Information

Measurements of dense fuel hydrodynamics in the NIF burning plasma experiments using backscattered neutron spectroscopy

Journal Article · · Physics of Plasmas
DOI:https://doi.org/10.1063/5.0203096· OSTI ID:2333741
 [1];  [2];  [1];  [2];  [2];  [2];  [2];  [2];  [1];  [3];  [4];  [1]
  1. Imperial College, London (United Kingdom)
  2. Lawrence Livermore National Laboratory (LLNL), Livermore, CA (United States)
  3. Univ. of Rochester, NY (United States). Lab. for Laser Energetics
  4. Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)

The hydrodynamics of the dense confining fuel shell is of great importance in defining the behavior of the burning plasma and burn propagation regimes of inertial confinement fusion experiments. However, it is difficult to probe due to its low emissivity in comparison with the central fusion core. In this work, we utilize the backscattered neutron spectroscopy technique to directly measure the hydrodynamic conditions of the dense fuel during fusion burn. Experimental data are fit to obtain dense fuel velocities and apparent ion temperatures. Trends of these inferred parameters with yield and velocity of the burning plasma are used to investigate their dependence on alpha heating and low mode drive asymmetry. It is shown that the dense fuel layer has an increased outward radial velocity as yield increases, showing that burn has continued into re-expansion, a key signature of hotspot ignition. A comparison with analytic and simulation models shows that the observed dense fuel parameters are displaying signatures of burn propagation into the dense fuel layer, including a rapid increase in dense fuel apparent ion temperature with neutron yield.

Research Organization:
Sandia National Laboratories (SNL-NM), Albuquerque, NM (United States); Lawrence Livermore National Laboratory (LLNL), Livermore, CA (United States)
Sponsoring Organization:
USDOE National Nuclear Security Administration (NNSA)
Grant/Contract Number:
NA0003525; AC52-07NA27344
OSTI ID:
2333741
Alternate ID(s):
OSTI ID: 2472993
Report Number(s):
SAND--2024-04068J
Journal Information:
Physics of Plasmas, Journal Name: Physics of Plasmas Journal Issue: 4 Vol. 31; ISSN 1070-664X
Publisher:
American Institute of Physics (AIP)Copyright Statement
Country of Publication:
United States
Language:
English

References (40)

Relativistically correct DD and DT neutron spectra journal June 2014
SpK: A fast atomic and microphysics code for the high-energy-density regime journal September 2023
A suite of neutron time-of-flight detectors to measure hot-spot motion in direct-drive inertial confinement fusion experiments on OMEGA
  • Mannion, O. M.; Knauer, J. P.; Glebov, V. Yu.
  • Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, Vol. 964 https://doi.org/10.1016/j.nima.2020.163774
journal June 2020
Design of inertial fusion implosions reaching the burning plasma regime journal January 2022
Burning plasma achieved in inertial fusion journal January 2022
Neutron spectrometry—An essential tool for diagnosing implosions at the National Ignition Facility (invited) journal October 2012
High-resolution spectroscopy used to measure inertial confinement fusion neutron spectra on Omega (invited) journal October 2012
The effect of turbulent kinetic energy on inferred ion temperature from neutron spectra journal July 2014
Analysis of the neutron time-of-flight spectra from inertial confinement fusion experiments journal November 2015
Signatures of asymmetry in neutron spectra and images predicted by three-dimensional radiation hydrodynamics simulations of indirect drive implosions journal May 2016
Synthetic nuclear diagnostics for inferring plasma properties of inertial confinement fusion implosions journal December 2018
Measurement of apparent ion temperature using the magnetic recoil spectrometer at the OMEGA laser facility journal October 2018
Calibration of a neutron time-of-flight detector with a rapid instrument response function for measurements of bulk fluid motion on OMEGA journal October 2018
Using multiple neutron time of flight detectors to determine the hot spot velocity journal October 2018
Diagnostic signatures of performance degrading perturbations in inertial confinement fusion implosions journal December 2018
Neutron backscatter edge: A measure of the hydrodynamic properties of the dense DT fuel at stagnation in ICF experiments journal January 2020
An analytic asymmetric-piston model for the impact of mode-1 shell asymmetry on ICF implosions journal June 2020
A generalized forward fit for neutron detectors with energy-dependent response functions journal December 2020
A thermodynamic condition for ignition and burn-propagation in cryogenic layer inertially confined fusion implosions journal February 2021
The five line-of-sight neutron time-of-flight (nToF) suite on the National Ignition Facility (NIF) journal February 2021
Neutron backscatter edges as a diagnostic of burn propagation journal June 2022
Measurements of low-mode asymmetries in the areal density of laser-direct-drive deuterium–tritium cryogenic implosions on OMEGA using neutron spectroscopy journal October 2022
Influence of mass ablation on ignition and burn propagation in layered fusion capsules journal January 2023
Neutron time of flight (nToF) detectors for inertial fusion experiments journal June 2023
emcee : The MCMC Hammer
  • Foreman-Mackey, Daniel; Hogg, David W.; Lang, Dustin
  • Publications of the Astronomical Society of the Pacific, Vol. 125, Issue 925 https://doi.org/10.1086/670067
journal March 2013
Interpreting inertial fusion neutron spectra journal February 2016
The production spectrum in fusion plasmas journal February 2011
Burn regimes in the hydrodynamic scaling of perturbed inertial confinement fusion hotspots journal June 2019
Measurements of the temperature and velocity of the dense fuel layer in inertial confinement fusion experiments journal May 2022
Design of an inertial fusion experiment exceeding the Lawson criterion for ignition journal August 2022
Experimental achievement and signatures of ignition at the National Ignition Facility journal August 2022
Indications of flow near maximum compression in layered deuterium-tritium implosions at the National Ignition Facility journal August 2016
Self-Generated Magnetic Fields in the Stagnation Phase of Indirect-Drive Implosions on the National Ignition Facility journal April 2017
Fusion Energy Output Greater than the Kinetic Energy of an Imploding Shell at the National Ignition Facility journal June 2018
Azimuthal Drive Asymmetry in Inertial Confinement Fusion Implosions on the National Ignition Facility journal April 2020
Observation of Hydrodynamic Flows in Imploding Fusion Plasmas on the National Ignition Facility journal September 2021
Lawson Criterion for Ignition Exceeded in an Inertial Fusion Experiment journal August 2022
Dynamics and Power Balance of Near Unity Target Gain Inertial Confinement Fusion Implosions journal August 2023
Burning plasma achieved in inertial fusion
  • Yang, A. B. Zylstra; O. A. Hurricane; D. A. Callahan, A. L. Kritcher, J. Ralph, H. F. Robey, J. S. Ross, C. Young, K. Baker, D. Casey, T. D¨Oppner, L. Divol, M. Hohenberger, S. Le Pape, A. Pak, P. Patel, R. Tommasini, S. Ali, B. Bachmann, R. Benedetti, D. Berger, R. Betti, S. Bhandarkar, R. Bionta, N. Birge, E. Bond, D. Bradley, T. Braun, T. Briggs, M. Bruhn, H. Chen, P. Celliers, T. Chapman, C. Choate, A. Christopherson, D. Clark, E. Dewald, J. -M. Di Nicola, T. Dittrich, M. J. Edwards, M. Farrell, J. Field, D. Fittinghoff, J. Frenje, J. Gaffney, G. Grim, S. Haan, K. Hahn, G. Hall, J. Hammer, E. Hartouni, J. Heebner, V. Hernandez, H. Herrmann, M. Herrmann, D. Hinkel, J. Holder, L. B. Hopkins, W. Hsing, K. Humbird, N. Izumi, J. Jeet, M. Gatu Johnson, O. Jones, S. Kerr, S. Khan, J. Kilkenny, Y. Kim, H. Geppert Kleinrath, V. Geppert Kleinrath, J. Kline, J. Kroll, C. Kong, O. L. Landen, D. Larson, N. C. Lemos, J. Lindl, A. Mackinnon, B. MacGowan, S. Maclaren, A. MacPhee, D. Mariscal, E. Marley, L. Masse, K. Meaney, N. Meezan, P. Michel, M. Millot, J. Milovich, J. Moody, A. Moore, K. Newman, A. Nikroo, R. Nora, L. Pelz, L. Peterson, N. Rice, H. Rinderknecht, M. Rosen, M. Rubery, J. Salmonson, J. Sater, D. Schlossberg, M. Schneider, K. Sequoia, S. Shin, V. Smalyuk, B. Spears, P. Springer, M. Stadermann, S. Stoupin, D. Strozzi, C. Thomas, E. Tubman, R. Town, C. Weber, K. Widmann, C. Wild, C. Wilde, T. Woods, B. Woodworth, B. Van Wonterghem, P. Volegov, S.
  • Harvard Dataverse https://doi.org/10.7910/dvn/5gie3y
dataset January 2022
Design of inertial fusion implosions reaching the burning plasma regime
  • Zimmerman, A. L. Kritcher; C. V. Young; H. F. Robey; C. R. Weber, A. B. Zylstra, O. A. Hurricane, D. A. Callahan, J. E. Ralph, J. S. Ross, K. L. Baker, D. T. Casey, D. S. Clark, T. D¨Oeppner, L. Divol, M. Hohenberger, S. Le Pape, A. E. Pak, P. K. Patel, R. Tommasini, S. J. Ali, P. A. Amendt, J. Atherton, B. Bachmann, D. Bailey, L. R. Benedetti, L. Berzak Hopkins, R. Betti, S. D. Bhandarkar, R. M. Bionta, N. W. Birge, E. J. Bond, D. K. Bradley, T. Braun, T. M. Briggs, M. W. Bruhn, P. M. Celliers, B. Chang, T. Chapman, H. Chen, C. Choate, A. R. Christopherson, J. W. Crippen, E. L. Dewald, T. R. Dittrich, M. J. Edwards, W. A. Farmer, J. E. Field, D. Fittinghoff, J. Frenje, J. Gaffney, M. Gatu Johnson, S. H. Glenzer, G. P. Grim, S. Haan, K. D. Hahn, G. N. Hall, B. A. Hammel, J. Harte, E. Hartouni, J. E. Heebner, V. J. Hernandez, H. Herrmann, M. C. Herrmann, D. E. Hinkel, D. D. Ho, J. P. Holder, W. W. Hsing, H. Huang, K. D. Humbird, N. Izumi, J. Jeet, O. Jones, G. D. Kerbel, S. M. Kerr, S. F. Khan, J. Kilkenny, Y. Kim, H. Geppert Kleinrath, V. Geppert Kleinrath, J. L. Kline, C. Kong, J. M. Koning, J. J. Kroll, O. L. Landen, S. Langer, D. Larson, N. C. Lemos, J. D. Lindl, T. Ma, B. J. MacGowan, A. J. Mackinnon, S. A. MacLaren, A. G. MacPhee, M. M. Marinak, D. A. Mariscal, E. V. Marley, L. Masse, K. Meaney, N. B. Meezan, P. A. Michel, M. A. Millot, J. L. Milovich, J. D. Moody, A. S. Moore, J. W. Morton, K. Newman, J. -M. G. Di Nicola, A. Nikroo, R. Nora, M. V. Patel, L. J. Pelz, J. L. Peterson, Y. Ping, B. B. Pollock, M. Ratledge, N. G. Rice, H. Rinderknecht, M. Rosen, M. S. Rubery, J. D. Salmonson, J. Sater, S. Schiaffino, D. J. Schlossberg, M. B. Schneider, C. R. Schroeder, H. A. Scott, S. M. Sepke, K. Sequoia, M. W. Sherlock, S. Shin, V. A. Smalyuk, B. K. Spears, P. T. Springer, M. Stadermann, S. Stoupin, D. J. Strozzi, L. J. Suter, C. A. Thomas, R. P. J. Town, E. R. Tubman, P. L. Volegov, K. Widmann, C. Wild, C. H. Wilde, B. M. Van Wonterghem, D. T. Woods, B. N. Woodworth, M. Yamaguchi, S. T. Yang, G. B.
  • Harvard Dataverse https://doi.org/10.7910/dvn/mpkq9m
dataset January 2022

Figures / Tables (3)