The K2 M67 Study: Precise Mass for a Turnoff Star in the Old Open Cluster M67
- San Diego State University, Department of Astronomy, San Diego, CA 92182 (United States)
- Center for Astrophysics - Harvard & Smithsonian, 60 Garden Street, Cambridge, MA 02138 (United States)
- University of Wisconsin-Madison, Department of Astronomy, Madison, WI 53706 (United States)
- Harvard-Smithsonian Center for Astrophysics, Cambridge, MA 02138 (United States)
- School of Physics, The University of New South Wales, Sydney NSW 2052 (Australia)
- Istituto Nazionale Astrofisica di Padova—Osservatorio Astronomico di Padova, Vicolo dell’Osservatorio 5, I-35122 Padova (Italy)
We present a study of the bright detached eclipsing main-sequence binary WOCS 11028 (Sanders 617) in the open cluster M67. Although the binary has only one eclipse per orbital cycle, we show that the masses of the stars can be derived very precisely thanks to a strong constraint on the orbital inclination: M {sub A} = 1.222 ± 0.006M {sub ⊙} and M {sub B} = 0.909 ± 0.004M {sub ⊙}. We use a spectral energy distribution fitting method to derive characteristics of the component stars in lieu of the precise radii that would normally be derived from a doubly eclipsing binary. The deconvolution of the SEDs reveals that the brighter component of the binary is at the faint turnoff point for the cluster—a distinct evolutionary point that occurs after the convective core has been established and while the star is in the middle of its movement toward lower surface temperatures, before the so-called hook at the end of the main sequence. The measurements are in distinct disagreement with evolution models at solar metallicity: higher metal abundances are needed to reproduce the characteristics of WOCS 11028 A. We discuss the changes to model physics that are likely to be needed to address the discrepancies. The clearest conclusions are that diffusion is probably necessary to reconcile spectroscopic abundances of M67 stars with the need for higher metallicity models and that reduced strength convective overshooting is occurring for stars at the turnoff. At super-solar bulk metallicity, various indicators agree on a cluster age between about 3.5 and 4.0 Gyr.
- OSTI ID:
- 23159095
- Journal Information:
- The Astronomical Journal (Online), Journal Name: The Astronomical Journal (Online) Journal Issue: 2 Vol. 161; ISSN 1538-3881
- Country of Publication:
- United States
- Language:
- English
Similar Records
THE K2 M67 STUDY: AN EVOLVED BLUE STRAGGLER IN M67 FROM K2 MISSION ASTEROSEISMOLOGY
WOCS 40007: A DETACHED ECLIPSING BINARY NEAR THE TURNOFF OF THE OPEN CLUSTER NGC 6819