The CaO-TiO{sub 2}-ZrO{sub 2} system at 1,200{degree}C and the solubilities of Hf and Gd in zirconolite
- Lawrence Livermore National Lab., CA (United States)
- Univ. of Wisconsin, Madison, WI (United States). Dept. of Geology and Geophysics
In recent years, significant technological advancements have been made in the Synroc scheme for the immobilization high-level nuclear waste. However, many basic scientific issues related to Synroc fabrication have yet to be addressed. The CaO-TiO{sub 2}-ZrO{sub 2} system is an integral part of the Synroc formulation. Phase equilibria are established in the CaO-TiO{sub 2}-ZrO{sub 2} system at 1,200 C, using X-ray diffraction and electron probe microanalysis. The existence of two previously reported ternary phases, zirconolite (CaZrTi{sub 2}O{sub 7}) and calzirtite (Ca{sub 2}Zr{sub 5}Ti{sub 2}O{sub 16}), is confirmed. Each of these phases exhibits a significant range of homogeneity between TiO{sub 2} and ZrO{sub 2} while maintaining a nearly constant concentration of CaO. The ternary solubilities of the constituent binary phases are found to be negligible, with the exceptions of the perovskites, which display mutual solubility of at least 22 mol.% and may in fact form a series of continuous solid solutions. The solubilities of Hf and Gd in zirconolite are also investigated. While Hf-bearing samples did not reach thermodynamic equilibrium under the experimental conditions employed, the existence of a Hf analog to zirconolite, CaHfTi{sub 2}O{sub 7}, is conclusively demonstrated. The phase is stable at the stoichiometric composition, and its lattice parameters are very close to those reported in the literature for stoichiometric zirconolite. A Gd-bearing sample of the composition Ca{sub 0.88}Zr{sub 0.88}Gd{sub 9.24}Ti{sub 2}O{sub 7} is found to be essentially single phase zirconolite, in agreement with previous investigations at higher temperatures.
- Research Organization:
- Lawrence Livermore National Lab., CA (United States)
- Sponsoring Organization:
- USDOE, Washington, DC (United States)
- DOE Contract Number:
- W-7405-ENG-48
- OSTI ID:
- 231352
- Report Number(s):
- UCRL-JC--122949; CONF-951155--115; ON: DE96010011
- Country of Publication:
- United States
- Language:
- English
Similar Records
Solid-state phase relationships in the calcia-titania-zirconia system at 1200 C
The incorporation of cerium in zirconolite
Related Subjects
36 MATERIALS SCIENCE
CALCIUM OXIDES
CHEMICAL COMPOSITION
CRYSTAL STRUCTURE
EXPERIMENTAL DATA
GADOLINIUM
HAFNIUM
PHASE DIAGRAMS
PHASE STUDIES
SOLUBILITY
SOLVENT PROPERTIES
SYNROC PROCESS
SYNTHETIC ROCKS
TEMPERATURE RANGE 1000-4000 K
THERMODYNAMIC PROPERTIES
TITANIUM OXIDES
ZIRCONIUM OXIDES
ZIRCONOLITE