skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Lycium barbarum polysaccharide protects against oxygen glucose deprivation/reoxygenation-induced apoptosis and autophagic cell death via the PI3K/Akt/mTOR signaling pathway in primary cultured hippocampal neurons

Journal Article · · Biochemical and Biophysical Research Communications
 [1]; ; ;  [1];  [2]; ; ; ;  [1]
  1. Department of Neurosurgery, Xijing Hospital, Fourth Military Medical University, Xi'an (China)
  2. Department of Neurosurgery, Baoji Center Hospital of Shanxi Province, Baoji (China)

Lycium barbarum polysaccharide (LBP) is the main active ingredient of Lycium barbarum, which exhibits several beneficial effects, including neuroprotection, anti-aging and anti-oxidation. However, the mechanism by which LBP protects against cerebral ischemia/reperfusion-induced injury remains obscure. In this study, we found that LBP pretreatment greatly attenuated oxygen glucose deprivation/reperfusion (OGD/R) injury in primary cultured hippocampal neurons. LBP also suppressed OGD/R-induced lactate dehydrogenase (LDH) leakage, and ameliorated oxidative stress. In addition, LBP significantly reduced OGD/R-induced apoptosis and autophagic cell death. LBP caused the down-regulation of cleaved Caspase-3/Caspase-3, LC3II/LC3I and Beclin 1, as well as up-regulation of Bcl-2/Bax and p62. Furthermore, mechanistic studies indicated that LBP pretreatment increased p-Akt and p-mTOR levels after OGD/R. In summary, our results indicated that LBP protects against OGD/R-induced neuronal injury in primary hippocampal neurons by activating the PI3K/Akt/mTOR signaling pathway.

OSTI ID:
23134433
Journal Information:
Biochemical and Biophysical Research Communications, Vol. 495, Issue 1; Other Information: Copyright (c) 2017 Elsevier Inc. All rights reserved.; Country of input: International Atomic Energy Agency (IAEA); ISSN 0006-291X
Country of Publication:
United States
Language:
English