Linearization errors in discrete goal-oriented error estimation
- Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)
This paper is concerned with goal-oriented a posteriori error estimation for nonlinear functionals in the context of nonlinear variational problems solved with continuous Galerkin finite element discretizations. A two-level, or discrete, adjoint-based approach for error estimation is considered. The traditional method to derive an error estimate in this context requires linearizing both the nonlinear variational form and the nonlinear functional of interest which introduces linearization errors into the error estimate. In this paper, we investigate these linearization errors. In particular, we develop a novel discrete goal-oriented error estimate that accounts for traditionally neglected nonlinear terms at the expense of greater computational cost. We demonstrate how this error estimate can be used to drive mesh adaptivity. Here, we show that accounting for linearization errors in the error estimate can improve its effectivity for several nonlinear model problems and quantities of interest. We also demonstrate that an adaptive strategy based on the newly proposed estimate can lead to more accurate approximations of the nonlinear functional with fewer degrees of freedom when compared to uniform refinement and traditional adjoint-based approaches.
- Research Organization:
- Sandia National Laboratories (SNL-NM), Albuquerque, NM (United States)
- Sponsoring Organization:
- USDOE National Nuclear Security Administration (NNSA)
- Grant/Contract Number:
- NA0003525
- OSTI ID:
- 2311435
- Alternate ID(s):
- OSTI ID: 2369731
- Report Number(s):
- SAND--2023-09724J
- Journal Information:
- Computer Methods in Applied Mechanics and Engineering, Journal Name: Computer Methods in Applied Mechanics and Engineering Journal Issue: 416 Vol. 416; ISSN 0045-7825
- Publisher:
- ElsevierCopyright Statement
- Country of Publication:
- United States
- Language:
- English
Similar Records
Enabling Predictive Simulation and UQ of Complex Multiphysics PDE Systems by the Development of Goal-Oriented Variational Sensitivity Analysis and A Posteriori Error Estimation Methods
Standard and goal-oriented adaptive mesh refinement applied to radiation transport on 2D unstructured triangular meshes