Bioactivity Potentials of Biodegradable Chitosan/Gelatin Film Forming Solutions Combined with Monoterpenoid Compounds
Journal Article
·
· Journal of Polymers and the Environment
- Mugla Sitki Kocman University, Research Laboratories Center (Turkey)
Novel food packaging systems including biodegradable/edible films have been introduced to the market for consumers who desire natural products for their nutrition. Biochemically active plant compounds are added to the biopolymer-based films to improve their functionality. Within the present study, chitosan (1%) and gelatin (4%) biopolymer-based film forming solutions (FFSs) combined with 1, 2, 5 and 10% (v/v) eugenol, pulegone and carvacrol, monoterpenoid compounds, were evaluated for their antimicrobial and antioxidative potential. Antioxidant activities and total phenolic contents (TPC) of the FFSs were determined by 1,1-diphenyl-2-picrylhydrazyl (DPPH) free radical scavenging activity and Folin–Ciocalteau assays, respectively. Screening the antimicrobial activity of FFSs were performed against food spoilage microorganisms including Bacillus cereus, Escherichia coli, Salmonella typhimurium, Staphylococcus aureus and Listeria monocytogenes and a fungi, Candida albicans by using agar well diffusion method. The chitosan FFS containing 10% carvacrol had greater TPC (3857.3 ± 0.07 mg gallic acid equivalent/L). The highest antioxidative capacity was observed for the chitosan FFS containing 10% eugenol as 97.92 ± 0.01%. FFSs with monoterpenoids showed promising antimicrobial activities against tested microorganisms. Based on antioxidative and antimicrobial potentials of the FFSs, it can be envisaged to use monoterpenoid incorporation to biopolymer films for food packaging applications.
- OSTI ID:
- 22977088
- Journal Information:
- Journal of Polymers and the Environment, Journal Name: Journal of Polymers and the Environment Journal Issue: 8 Vol. 27; ISSN 1566-2543
- Country of Publication:
- United States
- Language:
- English
Similar Records
Physicochemical, Microstructural and Thermal Characterization of Chitosan from Blue Crab Shell Waste and Its Bioactivity Characteristics
Design, synthesis, molecular docking, antimicrobial, and antioxidant activities of new phenylsulfamoyl carboxylic acids of pharmacological interest
Gamma irradiation effect on the chemical composition and the antioxidant activity of Ipomoea batatas L
Journal Article
·
Thu Nov 14 23:00:00 EST 2019
· Journal of Polymers and the Environment
·
OSTI ID:22959281
Design, synthesis, molecular docking, antimicrobial, and antioxidant activities of new phenylsulfamoyl carboxylic acids of pharmacological interest
Journal Article
·
Sat Dec 14 23:00:00 EST 2019
· Medicinal Chemistry Research (Print)
·
OSTI ID:22936156
Gamma irradiation effect on the chemical composition and the antioxidant activity of Ipomoea batatas L
Journal Article
·
Thu Sep 25 00:00:00 EDT 2014
· AIP Conference Proceedings
·
OSTI ID:22307904