skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Synergetic Strengthening of Grain Refinement and Texture in Gradient Zircaloy-4 by Surface Mechanical Rolling Treatment

Journal Article · · Journal of Materials Engineering and Performance
; ; ;  [1]
  1. Xi’an Jiaotong University, State Key Laboratory for Mechanical Behavior of Materials (China)

A Zircaloy-4 rod was subjected to surface mechanical rolling treatment (SMRT) to form a gradient structure, and the evolution of the resulting sub-grain-boundary property and texture across the gradient structure was characterized using electron backscattered diffraction. Dual-gradient structures in grain size and orientation were formed; the grain size was refined from several microns at the center to approximately 400 nm at the topmost surface. Texture analysis revealed that the c-axis gradually tilted from a random orientation toward the parallel-to-radial direction on the radial–tangential plane. The SMRT-induced formation of the dual-gradient microstructure is attributed to the formation of gradient distributions of stress and strain, which resulted in various deformation mechanisms (twinning and dislocation) being active at different depths. During the SMRT process, twinning and dislocations were activated to refine the grains. When the dual-gradient microstructure formed, twinning was mainly activated at the subsurface near the matrix, whereas dislocations were activated across the entire gradient. The geometrically necessary dislocation density increased with decreasing depth and then slightly decreased near the surface. The synergetic strengthening of the dual-gradient microstructure resulted in a gradient distribution of the microhardness near the surface. Thus, the Zircaloy-4 rod exhibited a good combination of strength and ductility.

OSTI ID:
22970416
Journal Information:
Journal of Materials Engineering and Performance, Vol. 28, Issue 10; Other Information: Copyright (c) 2019 ASM International; Country of input: International Atomic Energy Agency (IAEA); ISSN 1059-9495
Country of Publication:
United States
Language:
English