skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Synthesis and in silico and in vitro evaluation of trimethoxy-benzamides designed as anti-prion derivatives

Journal Article · · Medicinal Chemistry Research (Print)
; ; ;  [1]; ;  [2];  [3];  [1];  [4];  [5];
  1. Federal University of Rio de Janeiro (UFRJ), Faculty of Pharmacy (Brazil)
  2. Federal University of Rio de Janeiro (UFRJ), Department of Biochemistry, Institute of Chemistry (Brazil)
  3. Federal University of Rio de Janeiro (UFRJ), Laboratory for the Support of Technological Development (LADETEC), Institute of Chemistry (Brazil)
  4. Federal University of Rio de Janeiro (UFRJ), Laboratory of Evaluation and Synthesis of Bioactive Substances (LASSBio), Institute of Biomedical Sciences (Brazil)
  5. National Institutes of Health, Laboratory of Persistent Viral Diseases, Rocky Mountain Laboratories, National Institute of Allergy and Infectious Diseases (United States)

Transmissible spongiform encephalopathies (TSEs), also known as prion diseases, are neurodegenerative disorders which affect mammals, including the human species, and arise after the conversion of the monomeric cellular prion protein (PrP{sup C}) into the aggregated scrapie form (PrP{sup Sc}). There is no therapy to treat TSEs and the identification of compounds that bind PrP{sup C}, preventing its conversion into PrP{sup Sc}, is a viable therapeutic strategy. We designed and synthesized six novel trimethoxy-benzamide compounds as anti-prion drug candidates. Molecular docking analyses predicted that all the derivatives bind to a hotspot region located in the PrP globular domain with very similar spatial orientation and interaction mode. Although none of the analogs inhibited in vitro-aggregation of recombinant PrP (rPrP) in a cell-free conversion assay, the RT-QuIC, compound 8a accelerated rPrP conversion into PrP{sup Sc}-like species. STD-NMR and ITC analyses indicated that both 8a and 8b bind to rPrP{sup 90–231}. These analogs were toxic to PrP{sup Sc}-infected cell lines, hence we could not assess their anti-prion activity by using this cellular approach, although this toxicity was cell line-dependent. These results point out that the 4-amino-quinoline trimethoxy-benzamide scaffold described herein represents a novel chemical pattern useful as a starting point for future structural optimization in the design of PrP ligands with improved affinity and safety profiles.

OSTI ID:
22936155
Journal Information:
Medicinal Chemistry Research (Print), Vol. 28, Issue 12; Other Information: Copyright (c) 2019 Springer Science+Business Media, LLC, part of Springer Nature; Country of input: International Atomic Energy Agency (IAEA); ISSN 1054-2523
Country of Publication:
United States
Language:
English

Similar Records

Differential Accumulation of Misfolded Prion Strains in Natural Hosts of Prion Diseases
Journal Article · Tue Dec 07 00:00:00 EST 2021 · Viruses · OSTI ID:22936155

Differentially expressed genes in iron-induced prion protein conversion
Journal Article · Fri Nov 25 00:00:00 EST 2016 · Biochemical and Biophysical Research Communications · OSTI ID:22936155

Magnetic microparticle-based multimer detection system for the detection of prion oligomers in sheep
Journal Article · Tue Sep 01 00:00:00 EDT 2015 · International Journal of Nanomedicine · OSTI ID:22936155