A New Efficient Quantitative Multi-component Phase Field: Lattice Boltzmann Model for Simulating Ti6Al4V Solidified Dendrite Under Forced Flow
Journal Article
·
· Metallurgical and Materials Transactions. B, Process Metallurgy and Materials Processing Science
- Tsinghua University, Key Laboratory for Advanced Materials Processing Technology, Ministry of Education, School of Materials Science and Engineering (China)
- Baoshan Iron & Steel Co., Ltd., State Key Laboratory of Development and Application Technology of Automotive Steel (China)
- University of Leicester, Department of Engineering (United Kingdom)
Ti6Al4V is a widely used, multi-component alloy in additive manufacturing, during which the fluid flow in the molten pool significantly affects the solidified dendrites. To predict and further control the microstructure, modeling and simulating the microstructure evolution play a critical role. In this study, a newly developed, efficient, quantitative multi-component phase-field (PF) model is coupled with a lattice Boltzmann (LB) model to simulate Ti6Al4V solidified dendrite evolution under fluid flow. The accuracy and convergence behavior of the model is validated by the Gibbs–Thomson relation at the dendrite tip. Single and multiple two-dimensional (2D) equiaxed dendrite evolution cases under forced flow were simulated. Results show that the dendrite pattern is influenced remarkably by the fluid flow. Underlying mechanisms of the asymmetrical evolution are revealed by discussing the interaction among the flow, composition distribution and dendrite morphology, quantitatively. The dendrite kinetics are also derived, which ascertains the relationship between tip velocity and undercooling and inlet velocity and is the foundation for larger-scale simulation. We believe that the coupled quantitative multi-component PF–LB framework employed in this study helps in investigating the solidified dendrite morphology evolution in a deep and quantitate manner.
- OSTI ID:
- 22933438
- Journal Information:
- Metallurgical and Materials Transactions. B, Process Metallurgy and Materials Processing Science, Journal Name: Metallurgical and Materials Transactions. B, Process Metallurgy and Materials Processing Science Journal Issue: 6 Vol. 50; ISSN 1073-5615; ISSN MTBSEO
- Country of Publication:
- United States
- Language:
- English
Similar Records
A sharp interface model for deterministic simulation of dendrite growth
Numerical modeling of solidification morphologies and segregation patterns in cast dendritic alloys
Macrotransport-solidification kinetics modeling of equiaxed dendritic growth. Part 1: Model development and discussion
Journal Article
·
Fri Jun 28 20:00:00 EDT 2019
· Computational Materials Science
·
OSTI ID:1531246
Numerical modeling of solidification morphologies and segregation patterns in cast dendritic alloys
Journal Article
·
Thu Nov 25 23:00:00 EST 1999
· Acta Materialia
·
OSTI ID:20006414
Macrotransport-solidification kinetics modeling of equiaxed dendritic growth. Part 1: Model development and discussion
Journal Article
·
Sat Nov 30 23:00:00 EST 1996
· Metallurgical and Materials Transactions. A, Physical Metallurgy and Materials Science
·
OSTI ID:438568