Energy Conservation in Distributed Interference as a Guarantee for Detecting a Detector Blinding Attack in Quantum Cryptography
An avalanche single-photon detector blinding attack is one of the methods for quantum hacking of quantum key distribution (QKD) systems. The attack was experimentally demonstrated for both phase- and polarization-encoded QKD systems. During this attack, an eavesdropper knows the entire key, does not produce errors and саnnot be detected. However, the phase encoding has neglected some significant features of the photocount statistics in the receiving party. It is shown in the paper at the level of fundamental principles that this attack changes the photocount statistics and leads to the detection of an eavesdropper. Expressions for the secret key length are obtained for this attack. This does not require any changes in the design and control electronics of the phase-encoded QKD system, and only changes in processing the results of registration of quantum states are sufficient. At the same time, the secret key vulnerability and compromise in polarization-encoded QKD systems is an existing fact rather than a potential menace.
- OSTI ID:
- 22917822
- Journal Information:
- Journal of Experimental and Theoretical Physics, Journal Name: Journal of Experimental and Theoretical Physics Journal Issue: 1 Vol. 128; ISSN JTPHES; ISSN 1063-7761
- Country of Publication:
- United States
- Language:
- English
Similar Records
On the vulnerability of basic quantum key distribution protocols and three protocols stable to attack with 'blinding' of avalanche photodetectors
Are There Enough Decoy States to Ensure Key Secrecy in Quantum Cryptography?