skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: OSSOS. VIII. The Transition between Two Size Distribution Slopes in the Scattering Disk

Journal Article · · The Astronomical Journal (Online)
; ; ;  [1]; ;  [2]; ;  [3];  [4];  [5];  [6];  [7]
  1. NRC-Herzberg Astronomy and Astrophysics, National Research Council of Canada, Victoria, BC (Canada)
  2. Institute of Astronomy and Astrophysics, Academia Sinica, Taipei, Taiwan (China)
  3. Astrophysics Research Centre, Queen’s University Belfast, Belfast (United Kingdom)
  4. Department of Physics and Astronomy, The University of British Columbia, Vancouver, BC (Canada)
  5. HL Dodge Department of Physics and Astronomy, University of Oklahoma, Norman, OK (United States)
  6. Institut UTINAM, CNRS-Université de Franche-Comté, Besançon (France)
  7. Lunar and Planetary Laboratory, University of Arizona, Tucson, AZ (United States)

The scattering trans-Neptunian Objects (TNOs) can be measured to smaller sizes than any other distant small-body population. We use the largest sample yet obtained, 68 discoveries, primarily by the Outer Solar System Origins Survey (OSSOS), to constrain the slope of its luminosity distribution, with sensitivity to much fainter absolute H-magnitudes than previous work. Using the analysis technique in Shankman et al., we confirm that a single slope for the H-distribution is not an accurate representation of the scattering TNOs and Centaurs, and that a break in the distribution is required, in support of previous conclusions. A bright-end slope of α {sub b} = 0.9 transitioning to a faint-end slope α {sub f} of 0.4–0.5 with a differential number contrast c from 1 (a knee) to 10 (a divot) provides an acceptable match to our data. We find that break magnitudes H {sub b} of 7.7 and 8.3, values both previously suggested for dynamically hot Kuiper Belt populations, are equally non-rejectable for a range of α {sub f} and c in our statistical analysis. Our preferred divot H-distribution transitions to α {sub f} = 0.5 with a divot of contrast c = 3 at H {sub b} = 8.3, while our preferred knee H-distribution transitions to α {sub f} = 0.4 at H {sub b} = 7.7. The intrinsic population of scattering TNOs required to match the OSSOS detections is 3 × 10{sup 6} for H {sub r} < 12, and 9 × 10{sup 4} for H {sub r} < 8.66 (D ≳ 100 km), with Centaurs having an intrinsic population two orders of magnitude smaller.

OSTI ID:
22897460
Journal Information:
The Astronomical Journal (Online), Vol. 155, Issue 5; Other Information: Country of input: International Atomic Energy Agency (IAEA); ISSN 1538-3881
Country of Publication:
United States
Language:
English