skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: A steady-state picture of solar wind acceleration and charge state composition derived from a global wave-driven MHD model

Journal Article · · Astrophysical Journal
; ; ; ; ; ; ;  [1];
  1. Atmospheric, Oceanic and Sciences, University of Michigan, 2455 Hayward, Ann Arbor, MI, 48109 (United States)

The higher charge states found in slow (<400 km s{sup −1}) solar wind streams compared to fast streams have supported the hypothesis that the slow wind originates in closed coronal loops and is released intermittently through reconnection. Here we examine whether a highly ionized slow wind can also form along steady and open magnetic field lines. We model the steady-state solar atmosphere using the Alfvén Wave Solar Model (AWSoM), a global MHD model driven by Alfvén waves, and apply an ionization code to calculate the charge state evolution along modeled open field lines. This constitutes the first charge state calculation covering all latitudes in a realistic magnetic field. The ratios O{sup +7}/O{sup +6} and C{sup +6}/C{sup +5} are compared to in situ Ulysses observations and are found to be higher in the slow wind, as observed; however, they are underpredicted in both wind types. The modeled ion fractions of S, Si, and Fe are used to calculate line-of-sight intensities, which are compared to Extreme-ultraviolet Imaging Spectrometer (EIS) observations above a coronal hole. The agreement is partial and suggests that all ionization rates are underpredicted. Assuming the presence of suprathermal electrons improved the agreement with both EIS and Ulysses observations; importantly, the trend of higher ionization in the slow wind was maintained. The results suggest that there can be a sub-class of slow wind that is steady and highly ionized. Further analysis shows that it originates from coronal hole boundaries (CHBs), where the modeled electron density and temperature are higher than inside the hole, leading to faster ionization. This property of CHBs is global and observationally supported by EUV tomography.

OSTI ID:
22883096
Journal Information:
Astrophysical Journal, Vol. 806, Issue 1; Other Information: Country of input: International Atomic Energy Agency (IAEA); Since 2009, the country of publication for this journal is the UK.; ISSN 0004-637X
Country of Publication:
United Kingdom
Language:
English