skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Improved Cr ii log(gf) values and abundance determinations in the photospheres of the sun and metal-poor star HD 84937

Journal Article · · Astrophysical Journal, Supplement Series
; ;  [1];  [2];  [3]
  1. Department of Physics, University of Wisconsin-Madison, 1150 University Avenue, Madison, WI 53706 (United States)
  2. Department of Astronomy and McDonald Observatory, University of Texas, Austin, TX 78712 (United States)
  3. National Institute of Standards and Technology, Gaithersburg, MD 20899 (United States)

New emission branching fraction (BF) measurements for 183 lines of the second spectrum of chromium (Cr ii) and new radiative lifetime measurements from laser-induced fluorescence for 8 levels of Cr{sup +} are reported. The goals of this study are to improve transition probability measurements in Cr ii and reconcile solar and stellar Cr abundance values based on Cr i and Cr ii lines. Eighteen spectra from three Fourier Transform Spectrometers supplemented with ultraviolet spectra from a high-resolution echelle spectrometer are used in the BF measurements. Radiative lifetimes from this study and earlier publications are used to convert the BFs into absolute transition probabilities. These new laboratory data are applied to determine the Cr abundance log ε in the Sun and metal-poor star HD 84937. The mean result in the Sun is 〈logε(Cr II)〉 = 5.624 ± 0.009 compared to 〈logε(Cr I)〉 = 5.644 ± 0.006 on a scale with the hydrogen abundance log ε(H) = 12 and with the uncertainty representing only line-to-line scatter. A Saha (ionization balance) test on the photosphere of HD 84937 is also performed, yielding 〈logε(Cr II)〉 = 3.417 ± 0.006 and 〈log ε(Cr i, lower level excitation potential E. P. > 0 eV)〉 = 3.374 ± 0.011 for this dwarf star. We find a correlation of Cr with the iron-peak element Ti, suggesting an associated nucleosynthetic production. Four iron-peak elements (Cr along with Ti, V, and Sc) appear to have a similar (or correlated) production history—other iron-peak elements appear not to be associated with Cr.

OSTI ID:
22872852
Journal Information:
Astrophysical Journal, Supplement Series, Vol. 228, Issue 1; Other Information: Country of input: International Atomic Energy Agency (IAEA); ISSN 0067-0049
Country of Publication:
United States
Language:
English