skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: A versatile technique to enable sub-milli-Kelvin instrument stability for precise radial velocity measurements: tests with the habitable-zone planet finder

Journal Article · · Astrophysical Journal
; ; ; ; ; ; ; ; ; ; ;  [1];  [2];  [3];  [4];  [5]
  1. Department of Astronomy and Astrophysics, The Pennsylvania State University, 525 Davey Lab, University Park, PA 16802 (United States)
  2. Department of Astronomy, University of Virginia, 530 McCormick Road, Charlottesville, VA 22904 (United States)
  3. PulseRay Inc., Beaver Dams, NY (United States)
  4. Cornell University, Ithaca, NY (United States)
  5. Macquarie University, Sydney (Australia)

Insufficient instrument thermomechanical stability is one of the many roadblocks for achieving 10 cm s{sup −1} Doppler radial velocity precision, the precision needed to detect Earth-twins orbiting solar-type stars. Highly temperature and pressure stabilized spectrographs allow us to better calibrate out instrumental drifts, thereby helping in distinguishing instrumental noise from astrophysical stellar signals. We present the design and performance of the Environmental Control System (ECS) for the Habitable-zone Planet Finder (HPF), a high-resolution (R = 50,000) fiber-fed near-infrared (NIR) spectrograph for the 10 m Hobby–Eberly Telescope at McDonald Observatory. HPF will operate at 180 K, driven by the choice of an H2RG NIR detector array with a 1.7 μm cutoff. This ECS has demonstrated 0.6 mK rms stability over 15 days at both 180 and 300 K, and maintained high-quality vacuum (<10{sup −7} Torr) over months, during long-term stability tests conducted without a planned passive thermal enclosure surrounding the vacuum chamber. This control scheme is versatile and can be applied as a blueprint to stabilize future NIR and optical high-precision Doppler instruments over a wide temperature range from ∼77 K to elevated room temperatures. A similar ECS is being implemented to stabilize NEID, the NASA/NSF NN-EXPLORE spectrograph for the 3.5 m WIYN telescope at Kitt Peak, operating at 300 K. A [full SolidWorks 3D-CAD model] and a comprehensive parts list of the HPF ECS are included with this manuscript to facilitate the adaptation of this versatile environmental control scheme in the broader astronomical community.

OSTI ID:
22869665
Journal Information:
Astrophysical Journal, Vol. 833, Issue 2; Other Information: Country of input: International Atomic Energy Agency (IAEA); ISSN 0004-637X
Country of Publication:
United States
Language:
English