skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: High-precision radio and infrared astrometry of LSPM J1314+1320AB. II. Testing pre-main-sequence models at the lithium depletion boundary with dynamical masses

Journal Article · · Astrophysical Journal
; ; ;  [1];  [2]; ;  [3];  [4]
  1. The University of Texas at Austin, Department of Astronomy, 2515 Speedway C1400, Austin, TX 78712 (United States)
  2. University of Vienna, Department of Astrophysics, Türkenschanzstr. 17, A-1180 Vienna (Austria)
  3. Institute for Astronomy, University of Hawai‘i, 2680 Woodlawn Drive, Honolulu, HI 96822 (United States)
  4. Harvard-Smithsonian Center for Astrophysics, 60 Garden Street, Cambridge, MA 02138 (United States)

We present novel tests of pre-main-sequence models based on individual dynamical masses for the M7 binary LSPM J1314+1320AB. Joint analysis of Keck adaptive optics astrometric monitoring along with Very Long Baseline Array radio data from a companion paper yield component masses of 92.8 ± 0.6 M {sub Jup} (0.0885 ± 0.0006 M {sub ☉}) and 91.7 ± 1.0 M {sub Jup} (0.0875 ± 0.0010 M {sub ☉}) and a parallactic distance of 17.249 ± 0.013 pc. We find component luminosities consistent with the system being coeval at 80.8 ± 2.5 Myr, according to BHAC15 evolutionary models. The presence of lithium is consistent with model predictions, marking the first test of the theoretical lithium depletion boundary using ultracool dwarfs of known mass. However, we find that the evolutionary model-derived average effective temperature (2950 ± 5 K) is 180 K hotter than that given by a spectral type–T{sub eff} relation based on BT-Settl models (2770 ± 100 K). We suggest that the dominant source of this discrepancy is model radii being too small by ≈13%. In a test mimicking the typical application of models by observers, we derive masses on the H-R diagram using luminosity and BT-Settl temperature. The estimated masses are lower by 46{sub −19}{sup +16}% (2.0σ) than we measure dynamically and would imply that this is a system of ≈50 M {sub Jup} brown dwarfs, highlighting the large systematic errors possible in H-R diagram properties. This is the first time masses have been measured for ultracool (≥M6) dwarfs displaying spectral signatures of low gravity. Based on features in the infrared, LSPM J1314+1320AB appears to have higher gravity than typical Pleiades and AB Dor members, opposite the expectation given its younger age. The components of LSPM J1314+1320AB are now the nearest, lowest mass pre-main-sequence stars with direct mass measurements.

OSTI ID:
22868817
Journal Information:
Astrophysical Journal, Vol. 827, Issue 1; Other Information: Country of input: International Atomic Energy Agency (IAEA); ISSN 0004-637X
Country of Publication:
United States
Language:
English

Similar Records

LSPM J1314+1320: An Oversized Magnetic Star with Constraints on the Radio Emission Mechanism
Journal Article · Mon Jul 10 00:00:00 EDT 2017 · Astrophysical Journal · OSTI ID:22868817

HIGH-PRECISION RADIO AND INFRARED ASTROMETRY OF LSPM J1314+1320AB. I. PARALLAX, PROPER MOTIONS, AND LIMITS ON PLANETS
Journal Article · Wed Aug 10 00:00:00 EDT 2016 · Astrophysical Journal · OSTI ID:22868817

Individual Dynamical Masses of Ultracool Dwarfs
Journal Article · Tue Aug 01 00:00:00 EDT 2017 · Astrophysical Journal, Supplement Series · OSTI ID:22868817