Development of Graphene Nanoplatelet-Reinforced AZ91 Magnesium Alloy by Solidification Processing
Journal Article
·
· Journal of Materials Engineering and Performance
- Izmir Institute of Technology, Department of Mechanical Engineering (Turkey)
It is a challenging task to effectively incorporate graphene nanoplatelets (GNPs) which have recently emerged as potential reinforcement for strengthening metals into magnesium-based matrices by conventional solidification processes due to their large surface areas and poor wettability. A solidification processing which combines mechanical stirring and ultrasonic dispersion of reinforcements in liquid matrix was employed to develop AZ91 magnesium alloy matrix composites reinforced with 0.25 and 0.5 wt.% GNPs. The microstructural studies conducted with scanning and transmission electron microscopes revealed that fairly uniform distribution and dispersion of GNPs through the matrix were achieved due to effective combination of mechanical and ultrasonic stirring. The GNPs embedded into the magnesium matrix led to significant enhancement in the hardness, tensile strength and ductility of the composites compared to those of unreinforced AZ91 alloy. The strength enhancement was predominantly attributed to the grain refinement by the GNP addition and dislocation generation strengthening due to the coefficient of thermal expansion mismatch between the matrix and reinforcement. The improved ductility was attributed to the refinement of β eutectics by transforming from lamellar to the divorced eutectics due to the GNP additions. In addition, the strengthening efficiency of the composite with 0.25 wt.% GNP was found to be higher than those of the composite with 0.5 wt.% GNP as the agglomeration tendency of GNPs is increased with increasing GNP content. These results were compared with those of the GNP-reinforced magnesium composites reported in the literature, indicating the potential of the process introduced in this study in terms of fabricating light and high-performance metal matrix composites.
- OSTI ID:
- 22860434
- Journal Information:
- Journal of Materials Engineering and Performance, Journal Name: Journal of Materials Engineering and Performance Journal Issue: 6 Vol. 27; ISSN 1059-9495; ISSN JMEPEG
- Country of Publication:
- United States
- Language:
- English
Similar Records
Processing, microstructure, and mechanical behavior of cast magnesium metal matrix composites
Development of matrix grain structure during the solidification of a Mg(AZ91)/SiC[sub p] composite
Interfacial design and strengthening mechanisms of AZ91 alloy reinforced with in-situ reduced graphene oxide
Journal Article
·
Fri Sep 01 00:00:00 EDT 1995
· Metallurgical Transactions, A
·
OSTI ID:116053
Development of matrix grain structure during the solidification of a Mg(AZ91)/SiC[sub p] composite
Journal Article
·
Mon Oct 31 23:00:00 EST 1994
· Scripta Metallurgica et Materialia; (United States)
·
OSTI ID:7153052
Interfacial design and strengthening mechanisms of AZ91 alloy reinforced with in-situ reduced graphene oxide
Journal Article
·
Sun Apr 15 00:00:00 EDT 2018
· Materials Characterization
·
OSTI ID:22805744
Related Subjects
36 MATERIALS SCIENCE
77 NANOSCIENCE AND NANOTECHNOLOGY
AGGLOMERATION
COMPARATIVE EVALUATIONS
DISLOCATIONS
DISPERSIONS
DISTRIBUTION
DUCTILITY
EUTECTICS
GRAPHENE
HARDNESS
MAGNESIUM ALLOYS
MICROSTRUCTURE
NANOSTRUCTURES
SOLIDIFICATION
STIRRING
SURFACE AREA
THERMAL EXPANSION
TRANSMISSION ELECTRON MICROSCOPY
WETTABILITY
77 NANOSCIENCE AND NANOTECHNOLOGY
AGGLOMERATION
COMPARATIVE EVALUATIONS
DISLOCATIONS
DISPERSIONS
DISTRIBUTION
DUCTILITY
EUTECTICS
GRAPHENE
HARDNESS
MAGNESIUM ALLOYS
MICROSTRUCTURE
NANOSTRUCTURES
SOLIDIFICATION
STIRRING
SURFACE AREA
THERMAL EXPANSION
TRANSMISSION ELECTRON MICROSCOPY
WETTABILITY