Physics-informed machine learning with optimization-based guarantees: Applications to AC power flow
Journal Article
·
· International Journal of Electrical Power and Energy Systems
Not Available
- Research Organization:
- Sandia National Laboratories (SNL-NM), Albuquerque, NM (United States)
- Sponsoring Organization:
- USDOE National Nuclear Security Administration (NNSA)
- Grant/Contract Number:
- NA0003525
- OSTI ID:
- 2283480
- Alternate ID(s):
- OSTI ID: 2311399
- Report Number(s):
- SAND--2024-00708J; S0142061523007986; 109741; PII: S0142061523007986
- Journal Information:
- International Journal of Electrical Power and Energy Systems, Journal Name: International Journal of Electrical Power and Energy Systems Journal Issue: C Vol. 157; ISSN 0142-0615
- Publisher:
- ElsevierCopyright Statement
- Country of Publication:
- United Kingdom
- Language:
- English
Similar Records
Physics-Informed Machine Learning Surrogates with Optimization-Based Guarantees: Applications to AC Power Flow.
Conference
·
Mon Nov 01 00:00:00 EDT 2021
·
OSTI ID:1897922