skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Application of Geant4 Monte Carlo simulation in dose calculations for small radiosurgical fields

Journal Article · · Medical Dosimetry
 [1];  [2];  [1];  [2];  [3];  [4]
  1. Radiotherapy Oncology Research Centre, Cancer Institute, Tehran University of Medical Sciences, Tehran (Iran, Islamic Republic of)
  2. Department of Physics, University of Trieste and INFN Trieste (Italy)
  3. Faculty of Medicine, Jirof University of Medical Sciences, Jiroft (Iran, Islamic Republic of)
  4. Comprehensive Cancer Centers of Nevada, Las Vegas, NV (United States)

The Geant4 toolkit was used to develop a Monte Carlo (MC)-based engine for accurate dose calculations in small radiation field sizes. The Geant4 toolkit (version 10.1.p02) was used to simulate 6-MV photon beam of a Varian2100C linear accelerator that is being used for stereotactic radiosurgery (SRS) treatment with small radiation fields. Geometric models of 3 in-house designed radiosurgical divergent cones, with the diameters of their projections at the isocenter being 10, 20, and 30 mm, were simulated. The accuracy of the MC simulation technique was examined by reproducing several different simulated dosimetric parameters of the primary beams with the experimental data. The dose distributions are first checked for single beams for each cone, then standard multiple field (SMF) techniques are applied. A sample set of DICOM files from computed tomography (CT) scan imaging of a patient's head was converted to the Geant4 geometry format to implement MC-based engine for a clinical test. To validate the accuracy of the MC-based calculations for SMF arrangements, the isodose lines from MC simulation in water phantom were compared with the measured isodose lines using EBT3 Gafchromic film in Solid Water phantoms. Agreements between measured and simulated depth dose values and beam profiles for SRS cones were generally within 2%/2 mm. For output factors, the largest discrepancy was observed for 10 mm SRS cone, which was 1.7%. For SMF techniques, in SRS cones, the MC simulation and EBT3 Gafchromic film dosimetry were in acceptable agreement (5%/5 mm). Excellent agreement between the results of the MC-based and measured dose values for both single and SMF techniques in SRS cones indicates the ability of the Geant4 toolkit to be applied as the platform for treatment planning of advanced radiotherapy techniques.

OSTI ID:
22824196
Journal Information:
Medical Dosimetry, Vol. 43, Issue 3; Other Information: Copyright (c) 2017 Elsevier Science B.V., Amsterdam, The Netherlands, All rights reserved.; Country of input: International Atomic Energy Agency (IAEA); ISSN 0958-3947
Country of Publication:
United States
Language:
English