skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: An Integrated, Systems-Based Approach to Mercury Research and Technology Development - 17252

Conference ·
OSTI ID:22794633
; ; ; ; ; ; ;  [1];  [2];  [3];  [4]
  1. Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831 (United States)
  2. Savannah River National Laboratory, Aiken, South Carolina 29808 (United States)
  3. Restoration Services Inc., Oak Ridge, Tennessee 37831 (United States)
  4. US Department of Energy Oak Ridge Office of Environmental Management, Oak Ridge, Tennessee 37830 (United States)

A 3-year strategic planning process was undertaken in Oak Ridge, Tennessee, to develop a research and technology development approach that can help guide mercury remediation in East Fork Poplar Creek (EFPC). Mercury remediation is a high priority for the US Department of Energy's (DOE's) Oak Ridge Office of Environmental Management because of large historical losses of mercury to the environment at the Y-12 National Security Complex (Y-12). Because of the extent of mercury losses and the complexities of mercury transport and fate in the stream environment, the success of conventional options for mercury remediation in the downstream sections of EFPC is uncertain. The overall Oak Ridge mercury remediation strategy focuses on mercury treatment actions at Y-12 in the short-term and research and technology development to evaluate longer-term solutions in the downstream environment. The technology development strategy is consistent with a phased, adaptive management paradigm and DOE's Technology Readiness Level guidelines. That is, early evaluation includes literature review, site characterization, and small-scale studies of a broad number of potential technologies. As more information is gathered, technologies that may have the most promise and potential remediation benefit will be chosen for more extensive and larger-scale pilot testing before being considered for remedial implementation. Field and laboratory research in EFPC is providing an improved level of understanding of mercury transport and fate processes in EFPC that will inform the development of site-specific remedial technologies. Technology development has centered on developing strategies that can mitigate the primary factors affecting mercury risks in the stream: (1) the amount of inorganic mercury available to the 1 This manuscript has been authored by UT-Battelle, LLC under Contract No. DE-AC05-00OR22725 with the U.S. Department of Energy. The United States Government retains and the publisher, by accepting the article for publication, acknowledges that the United States Government retains a non-exclusive, paid-up, irrevocable, world-wide license to publish or reproduce the published form of this manuscript, or allow others to do so, for United States Government purposes. The Department of Energy will provide public access to these results of federally sponsored research in accordance with the DOE Public Access Plan (http://energy.gov/downloads/doe-public-access-plan).stream system, (2) the conversion of inorganic mercury to methylmercury, and (3) the bioaccumulation of methylmercury through the food web. Given the downstream complexities and interdependencies between sources and processes in EFPC, no one task or approach is likely to solve the mercury problem in the creek, thus highlighting the importance of using an integrated, systems-based approach to develop remedial solutions. (authors)

Research Organization:
WM Symposia, Inc., PO Box 27646, 85285-7646 Tempe, AZ (United States)
OSTI ID:
22794633
Report Number(s):
INIS-US-19-WM-17252; TRN: US19V0312038852
Resource Relation:
Conference: WM2017 Conference: 43. Annual Waste Management Symposium, Phoenix, AZ (United States), 5-9 Mar 2017; Other Information: Country of input: France; 4 refs.; available online at: http://archive.wmsym.org/2017/index.html
Country of Publication:
United States
Language:
English