skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Biodegradable Tragacanth Gum Based Silver Nanocomposite Hydrogels and Their Antibacterial Evaluation

Journal Article · · Journal of Polymers and the Environment
;  [1];
  1. Yeungnam University, School of Chemical Engineering (Korea, Republic of)

In this article, biodegradable tragacanth gum (TG) biopolymer based silver nanocomposite hydrogels (SNCHs) were prepared with acrylamide as monomer using a simple redox polymerization method. TG acts as stabilizer to produce uniform and large silver nanoparticles (Ag-NPs) in presence of Terminalia chebula (TC) leaf extract in the hydrogel network. Forier transform infrared spectroscopy demonstrated the structural units of functional groups of polymeric backbone of the hydrogels. The formation of Ag-NPs in TG based hydrogels was confirmed by UV–Vis spectra. The morphology of homogeneously dispersed Ag-NPs throughout hydrogel networks was confirmed by scanning electron microscopy. TEM analysis indicates that Ag-NPs with average diameters of around 5 nm formed within the hydrogel networks. The evaluation of antibacterial activity of Ag-NPs performed against gram-negative Escherichia coli and gram-positive Bacillus subtilis bacteria and obtained results proved that these newly developed hydrogels have great potential for use in wound healing as well as water purification applications.

OSTI ID:
22788241
Journal Information:
Journal of Polymers and the Environment, Vol. 26, Issue 2; Other Information: Copyright (c) 2018 Springer Science+Business Media, LLC, part of Springer Nature; Article Copyright (c) 2017 Springer Science+Business Media New York; http://www.springer-ny.com; Country of input: International Atomic Energy Agency (IAEA); ISSN 1566-2543
Country of Publication:
United States
Language:
English