Skip to main content
U.S. Department of Energy
Office of Scientific and Technical Information

Development of flexible wings and flapping mechanism with integrated electronic control system, for micro air vehicle research

Journal Article · · Experimental Techniques
; ;  [1]
  1. Universiti Sains Malaysia, School of Mechanical Engineering (Malaysia)
This paper presents the development of flexible wings, flapping mechanism, and integrated electronic control system (ECS) to emulate the bat wing flapping for the ongoing micro air vehicle (MAV) research. Three bat species having dimensions close to the design requirement of MAV, namely, Mormopterus Planiceps, Nytophilus Geoffroyi, and Scotorepens Balstoni were selected, and the average of their physical dimensions was chosen. The commercially available titanium alloy, Ti ± 6Al ± 4V, was used for the wing frame, and the membrane was made of latex. A four-bar slider-crank mechanism was designed and fabricated to facilitate the wing flapping; ECS controlled the flapping frequency in the real-time mode. The system was tested in open air wind tunnel at frequency6 Hz, angle of attack (AOA) 0–50°, and velocity range 2–7 m s{sup −1}. The experimental flapping angle which is compared with the theoretical flapping angle was obtained from the analytical kinematic model. The mean lift and drag coefficients were also measured and the results were found to be excellent. Compared to the manual control and measurement of flapping frequency, the proposed ECS demonstrates efficient control and accurate measurement. Moreover, the tedious procedure involved in the repeated calibrations for the manual system is totally eliminated by ECS.
OSTI ID:
22777075
Journal Information:
Experimental Techniques, Journal Name: Experimental Techniques Journal Issue: 4 Vol. 37; ISSN 0732-8818; ISSN EXPTD2
Country of Publication:
United States
Language:
English