skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Exact Solution of the Navier–Stokes Equation Describing Nonisothermal Large-Scale Flows in a Rotating Layer of Liquid with Free Upper Surface

Journal Article · · Journal of Mathematical Sciences
 [1]
  1. Perm State University (Russian Federation)

We present an analytic representation of an exact solution of the Navier–Stokes equations that describe flows of a rotating horizontal layer of a liquid with rigid and thermally isolated bottom and a free upper surface. On the upper surface, a constant tangential stress of an external force is given, and heat emission governed by the Newton law occurs. The temperature of the medium over the surface of the liquid is a linear function of horizontal coordinates. We find the solution of the boundary-value problem for ordinary differential equations for the velocity and temperature. and examine its form depending on the Taylor, Grashof, Reynolds, and Biot numbers. In rotating liquid, the motion is helical; account of the inhomogeneity of the temperature makes the helical motion more complicated.

OSTI ID:
22771261
Journal Information:
Journal of Mathematical Sciences, Vol. 230, Issue 5; Conference: International symposium on differential equations, Perm (Russian Federation), 17-18 May 2016; Other Information: Copyright (c) 2018 Springer Science+Business Media, LLC, part of Springer Nature; http://www.springer-ny.com; Country of input: International Atomic Energy Agency (IAEA); ISSN 1072-3374
Country of Publication:
United States
Language:
English

Similar Records

Krylov methods for the incompressible Navier-Stokes equations
Journal Article · Sat Jan 01 00:00:00 EST 1994 · Journal of Computational Physics; (United States) · OSTI ID:22771261

A B-Spline Method for Solving the Navier Stokes Equations
Journal Article · Sat Jan 01 00:00:00 EST 2005 · Computers and Fluids · OSTI ID:22771261

Vorticity moments in four numerical simulations of the 3D Navier–Stokes equations
Journal Article · Wed Sep 04 00:00:00 EDT 2013 · Journal of Fluid Mechanics · OSTI ID:22771261