Skip to main content
U.S. Department of Energy
Office of Scientific and Technical Information

Numerical study of a smoothing algorithm for the complementarity system over the second-order cone

Journal Article · · Computational and Applied Mathematics
; ;  [1]
  1. Xinyang Normal University, School of Mathematics and Statistics (China)

This paper deals with the complementarity system over the second-order cone (denoted by CSSOC) which contains a wide class of problems. We extend a class of regularized Chen–Harker–Kanzow–Smale smoothing functions studied by Huang and Sun (Appl Math Optim 52:237–262, 2005) for the linear complementarity problem to the CSSOC. Based on this class of functions, we propose a smoothing algorithm for solving the CSSOC. Under weak assumptions, we prove that the proposed algorithm has global and local quadratic convergence. The proposed algorithm is different from existing smoothing algorithms for solving the CSSOC because it adopts a new nonmonotone line search rule. In addition, our algorithm solves a new equation reformulation of the CSSOC. Numerical experiments indicate that the proposed algorithm is quite effective.

OSTI ID:
22769291
Journal Information:
Computational and Applied Mathematics, Journal Name: Computational and Applied Mathematics Journal Issue: 3 Vol. 37; ISSN 0101-8205
Country of Publication:
United States
Language:
English

Similar Records

A variant nonmonotone smoothing algorithm with improved numerical results for large-scale LWCPs
Journal Article · Sun Jul 15 00:00:00 EDT 2018 · Computational and Applied Mathematics · OSTI ID:22769253

Jacobian consistency of a one-parametric class of smoothing Fischer–Burmeister functions for SOCCP
Journal Article · Thu Mar 15 00:00:00 EDT 2018 · Computational and Applied Mathematics · OSTI ID:22769379

Non-Interior Continuation Method for Solving the Monotone Semidefinite Complementarity Problem
Journal Article · Wed May 21 00:00:00 EDT 2003 · Applied Mathematics and Optimization · OSTI ID:21064234