Biparametric investigation of the general standard map: multistability and global bifurcations
We investigate multistability and global bifurcations in the general standard map, a biparametric two-dimensional map. Departing from the conservative case of the map, we describe the evolution of periodic solutions and their basins of attraction as dissipation builds up, paying special attention on how the biparametric variation affects multistability. We examine general and specific phenomena and behavior for three distinct dynamical regimes, namely small, moderate, and large damping and different forcing amplitudes. Also, we report numerically the mechanism of global bifurcations associated to small chaotic attractors in the multistable system. Several global bifurcations are investigated as dissipation increases. Specifically, through the characterization of an interior, a merging and a boundary crisis, we study the crucial role played by fundamental hyperbolic invariant structures, such as unstable periodic orbits and their stable and unstable invariant manifolds, in the mechanisms by which the phase space is globally transformed.
- OSTI ID:
- 22769259
- Journal Information:
- Computational and Applied Mathematics, Journal Name: Computational and Applied Mathematics Journal Issue: 3 Vol. 37; ISSN 0101-8205
- Country of Publication:
- United States
- Language:
- English
Similar Records
Biparametric equilibria bifurcations of the Pierce diode: A one-dimensional plasma-filled device
Reconstruction of chaotic saddles by classification of unstable periodic orbits: Kuramoto-Sivashinsky equation