skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Quercetin reverses experimental pulmonary arterial hypertension by modulating the TrkA pathway

Journal Article · · Experimental Cell Research

Pulmonary arterial hypertension (PAH) is characterized by excessive proliferation, resistance to apoptosis, and increased migration of pulmonary artery smooth muscle cells (PASMCs). We hypothesized that quercetin exerts protective effects against this disease; thus, a chronic hypoxia model of PAH was generated using male Sprague-Dawley rats, which were treated with quercetin. In this model, quercetin prevented the development of PAH, right ventricular hypertrophy, and vascular remodeling after exposure to hypoxia. Quercetin inhibited PASMC proliferation and increased the apoptosis of PASMCs in vivo. In vitro, quercetin significantly inhibited hypoxia-induced PASMC proliferation, arrested cells in G1/G0 and inhibited cell migration in a dose-dependent manner. Moreover, our results showed that quercetin increased cyclin D1 protein levels and decreased the protein expression of cyclin B1 and Cdc2. Additionally, quercetin altered the Bax/Bcl-2 ratio and reduced MMP2, MMP9, CXCR4, integrin β1, and integrin α5 expression. Using genome-wide microarray analysis, we found that factors regulating proliferation, apoptosis, cell cycle, and migration were related to the tyrosine receptor kinase A (TrkA) pathway. In addition, activation of the TrkA/AKT signaling cascade during hypoxia was inhibited by quercetin in a dose-dependent manner. Moreover, quercetin alone inhibited the TrkA/AKT signaling pathway, resulting in decreased PASMC migration, cell cycle arrest and the induction of apoptosis. Our data suggest that quercetin is a potential candidate for the treatment of hypoxia-induced PAH. - Graphical abstract: Graphical summary illustrating quercetin reversed hypoxia-induced PAH via modulating the TrkA signal cascade. - Highlights: • Quercetin ameliorate hypoxia-induced PAH and pulmonary arterial remodeling. • Quercetin reverses hypoxia-induced apoptosis resistance, cell cycle arrested and migration in PASMCs. • Quercetin alleviate experimental PAH partially by modulating the TrkA/AKT signaling pathway.

OSTI ID:
22746378
Journal Information:
Experimental Cell Research, Vol. 339, Issue 1; Other Information: Copyright (c) 2015 Elsevier Science B.V., Amsterdam, The Netherlands, All rights reserved.; Country of input: International Atomic Energy Agency (IAEA); ISSN 0014-4827
Country of Publication:
United States
Language:
English