skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Supercritical drying of cementitious materials

Journal Article · · Cement and Concrete Research

Techniques to characterize the microstructure of hydrated cement require dried materials. However, the microstructure of hydrated products is significantly altered by high capillary forces during drying when using the conventional drying methods. To avoid drying stresses when preparing samples, we have employed supercritical drying (SCD) which has been used for decades to prepare aerogels that undergo no shrinkage during drying, but has rarely been used for cementitious materials. The pore solution is first replaced with isopropanol, and then with trifluoromethane (R23). The temperature and pressure are raised above the critical point, where no menisci or capillary pressure can exist; therefore, the dried samples are free of artifacts created by stresses. Images from scanning electron microscope show less compact morphology for supercritically dried samples than that dried by conventional methods, while BET surface areas of SCD samples are very close to samples dried by the isopropanol replacement method. This can be explained by the fact that isopropanol and supercritical fluid enter the micropores and block them. The nature of the chemical interactions of isopropanol and R23 with cement pastes are still not clear, but no reaction products were identified in the present study.

OSTI ID:
22701568
Journal Information:
Cement and Concrete Research, Vol. 99; Other Information: Copyright (c) 2017 Elsevier Science B.V., Amsterdam, The Netherlands, All rights reserved.; Country of input: International Atomic Energy Agency (IAEA); ISSN 0008-8846
Country of Publication:
United States
Language:
English

Similar Records

Morphology of cementitious material during early hydration
Journal Article · Tue May 15 00:00:00 EDT 2018 · Cement and Concrete Research · OSTI ID:22701568

Titania-silica mixed oxides: I. Influence of sol-gel and drying conditions on structural properties
Journal Article · Sat Apr 15 00:00:00 EDT 1995 · Journal of Catalysis · OSTI ID:22701568

Monitoring the internal swelling in cementitious mortars with single-sided 1H nuclear magnetic resonance
Journal Article · Sat Sep 15 00:00:00 EDT 2018 · Cement and Concrete Research · OSTI ID:22701568