skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Effect of nano-SiO{sub 2} particles and curing time on development of fiber-matrix bond properties and microstructure of ultra-high strength concrete

Journal Article · · Cement and Concrete Research
 [1];  [1]
  1. College of Civil Engineering, Hunan University, Changsha 410082, Hunan (China)

Bond properties between fibers and cementitious matrix have significant effect on the mechanical behavior of composite materials. In this study, the development of steel fiber-matrix interfacial bond properties in ultra-high strength concrete (UHSC) proportioned with nano-SiO{sub 2} varying between 0 and 2%, by mass of cementitious materials, was investigated. A statistical model relating either bond strength or pullout energy to curing time and nano-SiO{sub 2} content was proposed by using the response surface methodology. Mercury intrusion porosimetry (MIP) and backscatter scanning electron microscopy (BSEM) were used to characterize the microstructure of the matrix and the fiber-matrix interface, respectively. Micro-hardness around the embedded fiber and hydration products of the matrix were evaluated as well. Test results indicated that the optimal nano-SiO{sub 2} dosage was 1% in terms of the bond properties and the microstructure. The proposed quadratic model efficiently predicted the bond strength and pullout energy with consideration of curing time and nano-SiO{sub 2} content. The improvement in bond properties associated with nano-silica was correlated with denser matrix and/or interface and stronger bond and greater strength of hydration products based on microstructural analysis.

OSTI ID:
22697110
Journal Information:
Cement and Concrete Research, Vol. 95; Other Information: Copyright (c) 2017 Elsevier Science B.V., Amsterdam, The Netherlands, All rights reserved.; Country of input: International Atomic Energy Agency (IAEA); ISSN 0008-8846
Country of Publication:
United States
Language:
English