Cerium chloride stimulated controlled conversion of B-to-Z DNA in self-assembled nanostructures
- DNA Nanotechnology & Application Laboratory, CSIR-Institute of Minerals & Materials Technology, Bhubaneswar 751 013 (India)
DNA adopts different conformation not only because of novel base pairs but also while interacting with inorganic or organic compounds. Self-assembled branched DNA (bDNA) structures or DNA origami that change conformation in response to environmental cues hold great promises in sensing and actuation at the nanoscale. Recently, the B-Z transition in DNA is being explored to design various nanomechanical devices. In this communication we have demonstrated that Cerium chloride binds to the phosphate backbone of self-assembled bDNA structure and induce B-to-Z transition at physiological concentration. The mechanism of controlled conversion from right-handed to left-handed has been assayed by various dye binding studies using CD and fluorescence spectroscopy. Three different bDNA structures have been identified to display B-Z transition. This approach provides a rapid and reversible means to change bDNA conformation, which can be used for dynamic and progressive control at the nanoscale. - Highlights: • Cerium-induced B-to-Z DNA transition in self-assembled nanostructures. • Lower melting temperature of Z-DNA than B-DNA confirmed by CD spectroscopy. • Binding mechanism of cerium chloride is explained using fluorescence spectroscopy. • Right-handed to left-handed DNA conformation is also noticed in modified bDNA structure.
- OSTI ID:
- 22696787
- Journal Information:
- Biochemical and Biophysical Research Communications, Journal Name: Biochemical and Biophysical Research Communications Journal Issue: 4 Vol. 482; ISSN 0006-291X; ISSN BBRCA9
- Country of Publication:
- United States
- Language:
- English
Similar Records
Macro-ions collapse leading to hybrid bio-nanomaterials.
Speculation on the biological roles of left-handed Z-DNA